哈里斯鹰算法优化BP神经网络(HHO-BP)回归预测研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

****🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️**座右铭:**行百里者,半于九十。

📋📋📋++本文目录如下:++🎁🎁🎁

目录

[💥1 概述](#💥1 概述)

[📚2 运行结果](#📚2 运行结果)

[🎉3 参考文献](#🎉3 参考文献)

[🌈4 Matlab代码及数据](#🌈4 Matlab代码及数据)


💥1 概述

哈里斯鹰算法优化BP神经网络(HHO-BP)回归预测是一种结合了哈里斯鹰算法和反向传播神经网络(BP神经网络)的方法,用于回归预测问题的研究。

BP神经网络是一种常用的人工神经网络模型,通过反向传播算法来训练网络参数,从而实现对输入数据的回归预测。然而,传统的BP神经网络在训练过程中容易陷入局部最优解,导致预测精度不高。

为了解决这个问题,研究者提出了使用哈里斯鹰算法来优化BP神经网络的方法。哈里斯鹰算法是一种新兴的优化算法,灵感来源于鹰群的觅食行为。该算法通过模拟鹰群中的竞争和合作关系,实现对搜索空间的全局优化。

在HHO-BP方法中,首先使用BP神经网络对训练数据进行拟合,并得到初始的网络参数。然后,利用哈里斯鹰算法对网络参数进行优化,以寻找更优的参数组合。在优化过程中,哈里斯鹰算法通过模拟鹰群的搜索行为,不断更新网络参数,直到达到收敛条件。

通过将哈里斯鹰算法和BP神经网络相结合,HHO-BP方法能够克服BP神经网络的局部最优解问题,提高回归预测的精度。实验证明,HHO-BP方法在回归预测问题上具有较好的性能,并且能够在较短的时间内找到全局最优解。

哈里斯鹰算法优化BP神经网络(HHO-BP)回归预测是一种有效的方法,可以提高回归预测的准确性和效率。它可以在多个领域中应用,如金融预测、气象预测等。

📚 2 运行结果

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

1\]李响,缪祥华,张如雪,等.利用哈里斯鹰算法优化卷积神经网络的入侵检测研究\[J\].化工自动化及仪表, 2023. \[2\]吴丁杰,温立书.一种基于哈里斯鹰算法改进的BP神经网络\[J\].网络安全技术与应用, 2022(001):000. ### [🌈](https://mp.weixin.qq.com/mp/appmsgalbum?__biz=Mzk0MDMzNzYwOA==&action=getalbum&album_id=2591810113208958977#wechat_redirect "🌈")****4 Matlab代码及数据****

相关推荐
minji...5 分钟前
C语言 函数递归
c语言·开发语言·算法
你好我是咯咯咯7 分钟前
代码随想录算法训练营Day36
算法
uhakadotcom15 分钟前
如何用AI打造高效招聘系统,HR效率提升100%!
后端·算法·面试
Felven1 小时前
A. Everybody Likes Good Arrays!
数据结构·算法
AI_RSER2 小时前
基于 Google Earth Engine 的南京江宁区土地利用分类(K-Means 聚类)
算法·机器学习·分类·kmeans·聚类·遥感·gee
Small踢倒coffee_氕氘氚2 小时前
是否应该禁止危险运动论文
经验分享·笔记·算法·灌灌灌灌
COOCC13 小时前
探秘卷积神经网络:深度学习的图像识别利器
人工智能·深度学习·神经网络·目标检测·机器学习·cnn
欲掩3 小时前
神经网络与深度学习第四章-前馈神经网络
人工智能·深度学习·神经网络
京东云开发者4 小时前
行稳、致远 | 技术驱动下的思考感悟
算法
Dignity_呱4 小时前
记一次手撕算法面试
前端·算法·面试