pytest自动化测试数据驱动yaml/excel/csv/json

这篇文章主要为大家介绍了pytest自动化测试数据驱动yaml/excel/csv/json的示例详解,有需要的朋友可以借鉴参考下。−

数据驱动

数据的改变从而驱动自动化测试用例的执行,最终引起测试结果的改变。简单说就是参数化的应用。

测试驱动在自动化测试中的应用场景:

  • 测试步骤的数据驱动;

  • 测试数据的数据驱动;

  • 配置的数据驱动;

1、pytest结合数据驱动-yaml

实现读yaml文件,先创建env.yml文件配置测试数据

工程目录结构:

  • data目录:存放yaml文件
cpp 复制代码
-
  dev: 127.0.0.1
  #dev: 127.0.0.2
  #prod: 127.0.0.3
  • testcase目录:存放测试用例文件
cpp 复制代码
import pytest
import yaml
class TestYaml:
    @pytest.mark.parametrize("env", yaml.safe_load(open("./env.yml")))
    def test_yaml(self, env):
        if "test" in env:
            print("这是测试环境")
            # print(env)
            print("测试环境的ip是:", env["test"])
        elif "dev" in env:
            print("这是开发文件")
            print("开发环境的ip是:", env["dev"])
            # print(env)

结果示例:


2、pytest结合数据驱动-excel

常用的读取方式有:xlrd、xlwings、pandas、openpyxl

以读excel文件,实现A+B=C并断言为例~

工程目录结构:

data目录:存放excel数据文件

  • func目录:存放被测函数文件
cpp 复制代码
def my_add(x, y):
    result = x + y
    return result
  • testcase目录:存放测试用例文件
cpp 复制代码
import openpyxl
import pytest
from test_pytest.read_excel.func.operation import my_add
def test_get_excel():
    """
    解析excel数据
    :return: [[1,1,2],[3,6,9],[100,200,300]]
    """
    book = openpyxl.load_workbook('../data/param.xlsx')
    sheet = book.active
    cells = sheet["A1":"C3"]
    print(cells)
    values = []
    for row in sheet:
        data = []
        for cell in row:
            data.append(cell.value)
        values.append(data)
    print(values)
    return values
class TestWithExcel:
    @pytest.mark.parametrize('x,y,expected', test_get_excel())
    def test_add(self, x, y, expected):
        assert my_add(int(x), int(y)) == int(expected)

3、pyetst结合数据驱动-csv

csv:逗号文件,以逗号分隔的string文件

读取csv数据:

  • 内置函数open()

  • 内置模块csv

  • 方法:csv.reader(iterable)

  • 参数:iterable,文件或列表对象

  • 返回:迭代器,遍历迭代器,每次会返回一行数据

以读csv文件,实现A+B=C并断言为例~

工程目录结构:

data目录:存放csv数据文件

func目录:存放被测函数文件

cpp 复制代码
def my_add(x, y):
    result = x + y
    return result

testcase目录:存放测试用例文件

cpp 复制代码
import csv
import pytest
from test_pytest.read_csv.func.operation import my_add
def test_get_csv():
    """
    解析csv文件
    :return:
    """
    with open('../data/params.csv') as file:
        raw = csv.reader(file)
        data = []
        for line in raw:
            data.append(line)
    print(data)
    return data
class TestWithCsv:
    @pytest.mark.parametrize('x,y,expected', test_get_csv())
    def test_add(self, x, y, expected):
        assert my_add(int(x), int(y)) == int(expected)

4、pytest结合数据驱动-json

json:js对象,是一种轻量级的数据交换格式。

json结构:

对象{"key":value}

数组[value1,value2...]

查看json文件:

1.pycharm

2.txt记事本

读取json文件:

内置函数open()

内置库json

方法 json.loads() json.dumps()

以读json文件,实现A+B=C并断言为例~

工程目录结构:

data目录:存放json数据文件

func目录:存放被测函数文件

cpp 复制代码
def my_add(x, y):
    result = x + y
    return result

testcase目录:存放测试用例文件

cpp 复制代码
import json
import pytest
from test_pytest.read_json.func.operation import my_add
def test_get_json():
    """
    解析json数据
    :return: [[1,1,2],[3,6,9],[100,200,300]]
    """
    with open('../data/params.json', 'r') as file:
        data = json.loads(file.read())
        print(list(data.values()))
        return list(data.values())
class TestWithJson:
    @pytest.mark.parametrize('x,y,expected', test_get_json())
    def test_add(self, x, y, expected):
        assert my_add(int(x), int(y)) == int(expected)

以上就是pytest自动化测试数据驱动yaml/excel/csv/json的详细内容


最后

如果你想学习自动化测试,那么下面这套视频应该会帮到你很多

如何逼自己1个月学完自动化测试,学完即就业,小白也能信手拈来,拿走不谢,允许白嫖....

最后我这里给你们分享一下我所积累和整理的一些文档和学习资料,有需要直接领取就可以了!

以上内容,对于软件测试的朋友来说应该是最全面最完整的备战仓库了,为了更好地整理每个模块,我也参考了很多网上的优质博文和项目,力求不漏掉每一个知识点,很多朋友靠着这些内容进行复习,拿到了BATJ等大厂的offer,这个仓库也已经帮助了很多的软件测试的学习者,希望也能帮助到你。

​​

​​​​

相关推荐
Lxinccode1 分钟前
python(48) : 命名截图[Windows工具(3)]
开发语言·python·截图·快速截图
bestcxx29 分钟前
0.2、AI Agent 开发中 ReAct 和 MAS 的概念
人工智能·python·dify·ai agent
fsnine1 小时前
Python Web框架对比与模型部署
开发语言·前端·python
B站计算机毕业设计之家1 小时前
深度学习实战:python动物识别分类检测系统 计算机视觉 Django框架 CNN算法 深度学习 卷积神经网络 TensorFlow 毕业设计(建议收藏)✅
python·深度学习·算法·计算机视觉·分类·毕业设计·动物识别
程序猿小D2 小时前
【完整源码+数据集+部署教程】 【运输&加载码头】仓库新卸物料检测系统源码&数据集全套:改进yolo11-DRBNCSPELAN
python·yolo·计算机视觉·目标跟踪·数据集·yolo11·仓库新卸物料检测系统
SiYuanFeng2 小时前
《Synthetic Visual Genome》论文数据集的预处理
python·场景图
MUTA️2 小时前
python中进程和线程
python
jie*2 小时前
小杰深度学习(seventeen)——视觉-经典神经网络——MObileNetV3
人工智能·python·深度学习·神经网络·numpy·matplotlib
麦麦大数据2 小时前
F025 基于知识图谱图书可视推荐系统 vue+flask+neo4j | python编写、知识图谱可视化+推荐系统
vue.js·python·知识图谱·推荐算法·协同过滤·图书推荐