Halcon MLP相关算子

(1) create_class_mlp( : : NumInput, NumHidden, NumOutput, OutputFunction, Preprocessing, NumComponents, RandSeed : MLPHandle)

功能:create_class_mlp以多层感知器(MLP)的形式创建一个神经网络,它可以用于分类或回归(函数近似),具体取决于OutputFunction的设置方式。MLP由三层组成:具有NumInput个输入变量(神经元)的输入层,具有NumHidden个神经元的隐藏层和具有NumOutput个输出变量的输出层。

控制输入参数1:NumInput:MLP输入变量(特征)的个数;

控制输入参数2:NumHidden:MLP隐藏层神经元的个数;

控制输入参数3:NumOutput:MLP输出变量的个数(类别数);

控制输入参数4:OutputFunction:MLP输出层激活函数的类型,Default value: 'softmax';

控制输入参数5:Preprocessing:用于变换特征向量的预处理类型,Default value: 'normalization';

控制输入参数6:NumComponents:预处理参数:转换特征的数量(Preprocessing= 'none'和Preprocessing= 'normalization'时忽略),Default value: 10;

控制输入参数7:RandSeed:用随机值初始化MLP的随机数生成器的种子值;

控制输出参数:MLPHandle:MLP句柄。

(2) add_sample_class_mlp( : : MLPHandle, Features, Target : )

功能:向多层感知机的训练数据中添加一个训练样本。

控制输入参数1:MLPHandle:MLP句柄;

控制输入参数2:Features:待存储训练样本的特征向量;

控制输入参数3:Target:待存储训练样本的类或目标向量。

(3) train_class_mlp( : : MLPHandle, MaxIterations, WeightTolerance, ErrorTolerance : Error, ErrorLog)

功能:训练一个多层感知器。

控制输入参数1:MLPHandle:MLP句柄;

控制输入参数2:MaxIterations:优化算法的最大迭代次数;

控制输入参数3:WeightTolerance:在优化算法的两次迭代之间,MLP权值之差设置阈值,Default value: 1.0;

控制输入参数4:ErrorTolerance :在优化算法的两次迭代之间,MLP对训练数据的平均误差设置阈值,Default value: 0.01;

控制输出参数1:Error:MLP对训练数据的平均误差;

控制输出参数2:ErrorLog:MLP在训练数据上的平均误差作为优化算法迭代次数的函数。

(4) evaluate_class_mlp( : : MLPHandle, Features : Result)

功能:通过一个MLP评估一个特征向量。

控制输入参数:MLPHandle:MLP句柄;

控制输入参数:Features:特征向量;

控制输出参数:Result:用MLP评估的特征向量结果。

(5) write_class_mlp( : : MLPHandle, FileName : )

功能:将训练好的多层感知器模型写入文件。

控制输入参数1:MLPHandle:MLP句柄;

控制输入参数2:FileName:待保存的文件名。

(6) classify_class_mlp( : : MLPHandle, Features, Num : Class, Confidence)

功能:用多层感知器计算特征向量的类别。

控制输入参数1:MLPHandle:MLP句柄;

控制输入参数2:Features:特征向量;

控制输入参数3:Num:要确定的最佳类的数量,Default value: 1;

控制输出参数1:Class:用MLP对特征向量进行分类的结果;

控制输出参数2:Confidence:特征向量属于某一类别的置信度。

(7) read_class_mlp( : : FileName : MLPHandle)

功能:从文件中读取一个多层感知器模型

控制输入参数:FileName:保存的MLP模型文件名;

控制输出参数:MLPHandle:MLP句柄。

(8) clear_samples_class_mlp( : : MLPHandle : )

功能:清除一个多层感知器的训练数据。

控制输入参数:MLPHandle:MLP句柄。

(9) clear_class_mlp( : : MLPHandle : )

功能:清除一个多层感知器。

控制输入参数:MLPHandle:MLP句柄。

相关推荐
机器视觉的发动机2 天前
从实验室到工业现场:机器人视觉感知系统的边缘AI架构实战, 深度解析硬件选型、TensorRT量化加速与多传感器融合的极致优化方案
人工智能·机器人·视觉检测·人机交互·机器视觉
机器视觉的发动机2 天前
特斯拉FSD v14技术解析:端到端神经网络与视觉系统的突破
人工智能·深度学习·神经网络·机器学习·自动化·视觉检测·机器视觉
机器视觉的发动机3 天前
波士顿动力机器人技术全解析从四足Spot到人形Atlas的机器人革命
大数据·人工智能·深度学习·机器人·视觉检测·机器视觉
机器视觉的发动机4 天前
大语言模型:从理论起源到技术革命
前端·javascript·自动化·视觉检测·ecmascript·easyui·机器视觉
搞科研的小刘选手6 天前
【双一流高校主办】第五届光学与机器视觉国际学术会议(ICOMV 2026)
人工智能·计算机视觉·机器视觉·光学·学术会议·控制工程·先进算法
Hi2024021718 天前
使用星图AI算力平台训练PETRV2-BEV模型
人工智能·自动驾驶·gpu·机器视觉·bev·算力平台
Dev7z23 天前
基于机器视觉与YOLO11的服装厂废料(边角料)分类检测系统(数据集+UI界面+训练代码+数据分析)
机器视觉·yolo11·服装厂废料·边角料·分类检测
Hi2024021723 天前
相机与激光雷达联合标定:如何选择高辨识度的参照物
数码相机·自动驾驶·雷达·相机标定·机器视觉
苏州知芯传感1 个月前
成本与性能的平衡术:面向亿级市场的消费电子MEMS微振镜,其设计是如何“做减法”的?
3d·机器视觉·mems·消费电子·微振镜
专注VB编程开发20年1 个月前
上位机开发-工厂流水线机器视频VisionPro、LabVIEW 实现多物品识别的
labview·机器视觉·visionpro