【COMP305 LEC 3 LEC 4】

LEC 3 A basic abstract model for a biological neuron

1. Weights of connections

Neuron gets fired if it has received from the presynaptic neurons 突触前神经元 a summary impulse 脉冲, which is above a certain threshold.

Signal from a single synapse突触 may sometime overcome the threshold and push a neuron to fire an action potential, but other synapses can achieve this only by simultaneously delivering their signals: Some inputs are more important!

定义:

Therefore, input from every synapse, or "connection", to the neuron in the abstract model must be assigned with some value w, called connection strength or weight of connection, to describe the importance of a connection.

2. Model

  1. The abstract neuron is excited when weighted sum is above the threshold 0

vs.

The biological neuron is excited when the signal density (spatial or temporal summation) is above the excitation potential threshold.

  1. Output is either 1 or 0.

vs.

Only the spikes(峰值)are remembered

LEC 4

Topic 2. The McCulloch-Pitts Neuron (1943)

1. McCulloch and Pitts demonstrated that

"...because of the all-or-none character of nervous activity, neural events and the relations among them can be treated by means of the propositional logic".

  1. The authors modelled the neuron as

a. a binary, discrete-time input

b. discrete-time:

The basic idea was to divide time into units, i.e., steps, and in each time period at most one spike can be initiated in the axon of a given neuron

将时间分成单位和步骤,每个时间一个神经元的轴突最多产生一次峰值

uniform velocity 脉冲基本都以匀速传播

Thus, the McCulloch-Pitts neuron operates on a discrete time scale,

t = 0,1,2,3, ...

c. binary input:

The types of the input and the output of a MP neuron are thus unified.

d. with excitatory and inhibitory connections 有着兴奋和抑制之间的联系 and an excitation threshold. 兴奋阙值

The network of such elements was the first model to tie the study of neural networks to the idea of computation in its modern sense.

将神经网络和现代意义上的计算思想联系起来

e. with excitatory and inhibitory connections 有着兴奋和抑制之间的联系 and an excitation threshold. 兴奋阙值

f. The network of such elements was the first model to tie the study of neural networks to the idea of computation in its modern sense. 将神经网络和现代意义上的计算思想联系起来

g. excitatory and inhibitory connections :

The weight of connection wi are:

+1 for excitatory type connection and 加一促进

Cerebral pyramidal cell:

-1 for inhibitory type connection. 减一抑制

h. Threshold

I. MP Neuron

In the MP neuron, we call the instant total input

St-1: instant stateof the neuron

j. Actication Function

相关推荐
落羽凉笙5 小时前
Python学习笔记(3)|数据类型、变量与运算符:夯实基础,从入门到避坑(附图解+代码)
笔记·python·学习
Quintus五等升5 小时前
深度学习①|线性回归的实现
人工智能·python·深度学习·学习·机器学习·回归·线性回归
jz_ddk7 小时前
[学习] 卫星导航的码相位与载波相位计算
学习·算法·gps·gnss·北斗
华清远见成都中心7 小时前
人工智能要学习的课程有哪些?
人工智能·学习
hssfscv8 小时前
Javaweb学习笔记——后端实战2_部门管理
java·笔记·学习
白帽子黑客罗哥8 小时前
不同就业方向(如AI、网络安全、前端开发)的具体学习路径和技能要求是什么?
人工智能·学习·web安全
于越海9 小时前
材料电子理论核心四个基本模型的python编程学习
开发语言·笔记·python·学习·学习方法
我命由我123459 小时前
开发中的英语积累 P26:Recursive、Parser、Pair、Matrix、Inset、Appropriate
经验分享·笔记·学习·职场和发展·求职招聘·职场发展·学习方法
北岛寒沫9 小时前
北京大学国家发展研究院 经济学原理课程笔记(第二十三课 货币供应与通货膨胀)
经验分享·笔记·学习
知识分享小能手9 小时前
Ubuntu入门学习教程,从入门到精通,Ubuntu 22.04中的Java与Android开发环境 (20)
java·学习·ubuntu