机器学习平台整理

开源系列

cube开源一站式云原生机器学习平台:https://blog.csdn.net/luanpeng825485697/article/details/123619334

github:https://github.com/tencentmusic/cube-studio

kubeflow参考

官网:https://www.kubeflow.org/docs/started/

参考:https://www.jianshu.com/p/192f22a0b857

AirFlow/NiFi/MLFlow/KubeFlow进展:https://blog.csdn.net/chenhuipin1173/article/details/100913909

最好的任务编排工具:Airflow vs Luigi vs Argo vs MLFlow

总结

一句话总结就是:kubeflow是一个为 Kubernetes 构建的可组合,便携式,可扩展的机器学习技术栈。

支持的训练架构-https://www.kubeflow.org/docs/components/training/

英文对比:

https://aicurious.io/posts/airflow-mlflow-or-kubeflow-for-mlops/

https://devsamurai.vn/blog/ml-platform-kuberflow-mlflow-argo-airflow/

通用型选airflow

机器学习偏向大规模选kubeflow

机器学习偏向小规模选mlflow

bash 复制代码
5. How to choose between Airflow+Mlflow, and Kubeflow?

To sum up, I have some recommendations from my personal perspective:

    If your system needs to deal with multiple types of workflow, not just machine learning, Airflow may support you better. It is a mature workflow orchestration frameworks with support for a lot of operators besides machine learning.
    If you want a system with predesigned patterns for machine learning, and run at large scale on Kubenetes clusters, you may want to consider Kubeflow. Many ML specific components in Kubeflow can save your time implementing from scratch in Airflow.
    If you want to deploy MLOps in a small scale system (for example, a workstation, or a laptop), picking Airflow+MLflow stack can eliminate the need of setting up and running a Kubenetes system, and save more resources for the main tasks.

This blog post has briefly shown the differences between three popular MLOps frameworks (Airflow, MLflow and Kubeflow). Hope that it helps you in making decision between 2 stacks (Airflow + MLflow and Kubeflow). If you want to talk more about these frameworks or recommend others, please comment beflow. Thank you very much!
相关推荐
小鸡吃米…4 小时前
机器学习 - K - 中心聚类
人工智能·机器学习·聚类
好奇龙猫4 小时前
【AI学习-comfyUI学习-第三十节-第三十一节-FLUX-SD放大工作流+FLUX图生图工作流-各个部分学习】
人工智能·学习
沈浩(种子思维作者)5 小时前
真的能精准医疗吗?癌症能提前发现吗?
人工智能·python·网络安全·健康医疗·量子计算
minhuan5 小时前
大模型应用:大模型越大越好?模型参数量与效果的边际效益分析.51
人工智能·大模型参数评估·边际效益分析·大模型参数选择
Cherry的跨界思维5 小时前
28、AI测试环境搭建与全栈工具实战:从本地到云平台的完整指南
java·人工智能·vue3·ai测试·ai全栈·测试全栈·ai测试全栈
MM_MS5 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
ASF1231415sd5 小时前
【基于YOLOv10n-CSP-PTB的大豆花朵检测与识别系统详解】
人工智能·yolo·目标跟踪
水如烟6 小时前
孤能子视角:“意识“的阶段性回顾,“感质“假说
人工智能
Carl_奕然6 小时前
【数据挖掘】数据挖掘必会技能之:A/B测试
人工智能·python·数据挖掘·数据分析
旅途中的宽~6 小时前
《European Radiology》:2024血管瘤分割—基于MRI T1序列的分割算法
人工智能·计算机视觉·mri·sci一区top·血管瘤·t1