机器学习平台整理

开源系列

cube开源一站式云原生机器学习平台:https://blog.csdn.net/luanpeng825485697/article/details/123619334

github:https://github.com/tencentmusic/cube-studio

kubeflow参考

官网:https://www.kubeflow.org/docs/started/

参考:https://www.jianshu.com/p/192f22a0b857

AirFlow/NiFi/MLFlow/KubeFlow进展:https://blog.csdn.net/chenhuipin1173/article/details/100913909

最好的任务编排工具:Airflow vs Luigi vs Argo vs MLFlow

总结

一句话总结就是:kubeflow是一个为 Kubernetes 构建的可组合,便携式,可扩展的机器学习技术栈。

支持的训练架构-https://www.kubeflow.org/docs/components/training/

英文对比:

https://aicurious.io/posts/airflow-mlflow-or-kubeflow-for-mlops/

https://devsamurai.vn/blog/ml-platform-kuberflow-mlflow-argo-airflow/

通用型选airflow

机器学习偏向大规模选kubeflow

机器学习偏向小规模选mlflow

bash 复制代码
5. How to choose between Airflow+Mlflow, and Kubeflow?

To sum up, I have some recommendations from my personal perspective:

    If your system needs to deal with multiple types of workflow, not just machine learning, Airflow may support you better. It is a mature workflow orchestration frameworks with support for a lot of operators besides machine learning.
    If you want a system with predesigned patterns for machine learning, and run at large scale on Kubenetes clusters, you may want to consider Kubeflow. Many ML specific components in Kubeflow can save your time implementing from scratch in Airflow.
    If you want to deploy MLOps in a small scale system (for example, a workstation, or a laptop), picking Airflow+MLflow stack can eliminate the need of setting up and running a Kubenetes system, and save more resources for the main tasks.

This blog post has briefly shown the differences between three popular MLOps frameworks (Airflow, MLflow and Kubeflow). Hope that it helps you in making decision between 2 stacks (Airflow + MLflow and Kubeflow). If you want to talk more about these frameworks or recommend others, please comment beflow. Thank you very much!
相关推荐
@心都19 分钟前
机器学习数学基础:29.t检验
人工智能·机器学习
9命怪猫21 分钟前
DeepSeek底层揭秘——微调
人工智能·深度学习·神经网络·ai·大模型
kcarly2 小时前
KTransformers如何通过内核级优化、多GPU并行策略和稀疏注意力等技术显著加速大语言模型的推理速度?
人工智能·语言模型·自然语言处理
倒霉蛋小马3 小时前
【YOLOv8】损失函数
深度学习·yolo·机器学习
MinIO官方账号3 小时前
使用 AIStor 和 OpenSearch 增强搜索功能
人工智能
补三补四3 小时前
金融时间序列【量化理论】
机器学习·金融·数据分析·时间序列
江江江江江江江江江4 小时前
深度神经网络终极指南:从数学本质到工业级实现(附Keras版本代码)
人工智能·keras·dnn
Fansv5874 小时前
深度学习-2.机械学习基础
人工智能·经验分享·python·深度学习·算法·机器学习
小怪兽会微笑4 小时前
PyTorch Tensor 形状变化操作详解
人工智能·pytorch·python
Erekys5 小时前
视觉分析之边缘检测算法
人工智能·计算机视觉·音视频