机器学习平台整理

开源系列

cube开源一站式云原生机器学习平台:https://blog.csdn.net/luanpeng825485697/article/details/123619334

github:https://github.com/tencentmusic/cube-studio

kubeflow参考

官网:https://www.kubeflow.org/docs/started/

参考:https://www.jianshu.com/p/192f22a0b857

AirFlow/NiFi/MLFlow/KubeFlow进展:https://blog.csdn.net/chenhuipin1173/article/details/100913909

最好的任务编排工具:Airflow vs Luigi vs Argo vs MLFlow

总结

一句话总结就是:kubeflow是一个为 Kubernetes 构建的可组合,便携式,可扩展的机器学习技术栈。

支持的训练架构-https://www.kubeflow.org/docs/components/training/

英文对比:

https://aicurious.io/posts/airflow-mlflow-or-kubeflow-for-mlops/

https://devsamurai.vn/blog/ml-platform-kuberflow-mlflow-argo-airflow/

通用型选airflow

机器学习偏向大规模选kubeflow

机器学习偏向小规模选mlflow

bash 复制代码
5. How to choose between Airflow+Mlflow, and Kubeflow?

To sum up, I have some recommendations from my personal perspective:

    If your system needs to deal with multiple types of workflow, not just machine learning, Airflow may support you better. It is a mature workflow orchestration frameworks with support for a lot of operators besides machine learning.
    If you want a system with predesigned patterns for machine learning, and run at large scale on Kubenetes clusters, you may want to consider Kubeflow. Many ML specific components in Kubeflow can save your time implementing from scratch in Airflow.
    If you want to deploy MLOps in a small scale system (for example, a workstation, or a laptop), picking Airflow+MLflow stack can eliminate the need of setting up and running a Kubenetes system, and save more resources for the main tasks.

This blog post has briefly shown the differences between three popular MLOps frameworks (Airflow, MLflow and Kubeflow). Hope that it helps you in making decision between 2 stacks (Airflow + MLflow and Kubeflow). If you want to talk more about these frameworks or recommend others, please comment beflow. Thank you very much!
相关推荐
لا معنى له4 小时前
目标检测的内涵、发展和经典模型--学习笔记
人工智能·笔记·深度学习·学习·目标检测·机器学习
AKAMAI5 小时前
Akamai Cloud客户案例 | CloudMinister借助Akamai实现多云转型
人工智能·云计算
小a杰.7 小时前
Flutter 与 AI 深度集成指南:从基础实现到高级应用
人工智能·flutter
colorknight7 小时前
数据编织-异构数据存储的自动化治理
数据仓库·人工智能·数据治理·数据湖·数据科学·数据编织·自动化治理
Lun3866buzha8 小时前
篮球场景目标检测与定位_YOLO11-RFPN实现详解
人工智能·目标检测·计算机视觉
janefir8 小时前
LangChain框架下DirectoryLoader使用报错zipfile.BadZipFile
人工智能·langchain
齐齐大魔王8 小时前
COCO 数据集
人工智能·机器学习
AI营销实验室9 小时前
原圈科技AI CRM系统赋能销售新未来,行业应用与创新点评
人工智能·科技
爱笑的眼睛119 小时前
超越MSE与交叉熵:深度解析损失函数的动态本质与高阶设计
java·人工智能·python·ai
tap.AI10 小时前
RAG系列(一) 架构基础与原理
人工智能·架构