详解数据结构-----栈

数据结构是计算机科学的基础之一,栈(Stack)是其中一个重要的数据结构之一。栈是一种线性数据结构,它遵循"后进先出"(Last In, First Out,LIFO)原则,意味着最后入栈的元素将首先被取出。在本文中,我们将深入研究栈的原理、创建方式、使用场景以及时间复杂度。

原理

栈是一种基于数组或链表的数据结构,它由两个主要操作组成:

  1. 入栈(Push):将元素添加到栈的顶部。
  2. 出栈(Pop):从栈的顶部移除元素。

栈的顶部被称为栈顶(Top),底部被称为栈底(Bottom)。栈内的元素排列有序,最后入栈的元素总是最靠近栈顶。由于LIFO原则,栈通常用于跟踪方法调用、表达式求值和管理临时数据。

创建方式

import java.util.EmptyStackException;

// 数据结构中的栈:原理、创建、应用和时间复杂度详解
public class Stack<T> {
    private static final int DEFAULT_CAPACITY = 10;
    private T[] elements;
    private int size;

    // 栈的构造函数
    public Stack() {
        elements = (T[]) new Object[DEFAULT_CAPACITY];
        size = 0;
    }

    // 入栈操作
    public void push(T element) {
        if (size == elements.length) {
            ensureCapacity();
        }
        elements[size++] = element;
    }

    // 出栈操作
    public T pop() {
        if (isEmpty()) {
            throw new EmptyStackException();
        }
        T element = elements[--size];
        elements[size] = null; // Help with garbage collection
        return element;
    }

    // 查看栈顶元素
    public T top() {
        if (isEmpty()) {
            throw new EmptyStackException();
        }
        return elements[size - 1];
    }

    // 检查栈是否为空
    public boolean isEmpty() {
        return size == 0;
    }

    // 获取栈的大小
    public int size() {
        return size;
    }

    // 扩展栈容量
    private void ensureCapacity() {
        int newCapacity = elements.length * 2;
        elements = Arrays.copyOf(elements, newCapacity);
    }

    // 主方法演示栈的使用
    public static void main(String[] args) {
        Stack<Integer> stack = new Stack<>();
        stack.push(1);
        stack.push(2);
        stack.push(3);

        System.out.println("栈顶元素: " + stack.top()); // 输出 "栈顶元素: 3"

        while (!stack.isEmpty()) {
            System.out.println("出栈: " + stack.pop());
        }
    }
}

使用场景

栈在计算机科学中有许多应用场景,包括但不限于:

方法调用和递归:栈用于存储函数调用的返回地址和局部变量。
表达式求值:栈可用于跟踪操作符和操作数,以计算数学表达式的结果。
浏览器前进和后退:浏览器使用两个栈来跟踪访问的页面,一个用于前进,一个用于后退。
括号匹配:栈可用于检查括号、大括号和方括号的匹配情况。
历史记录:许多应用程序使用栈来跟踪用户活动的历史记录。

时间复杂度

栈的基本操作的时间复杂度如下:

入栈(Push):O(1) - 在栈顶添加元素,时间复杂度是常数。
出栈(Pop):O(1) - 从栈顶移除元素,时间复杂度是常数。
查看栈顶元素(Top):O(1) - 获取栈顶元素的时间复杂度是常数。
检查栈是否为空(isEmpty):O(1) - 检查栈是否为空的时间复杂度是常数。

总体而言,栈是一个高效的数据结构,适用于许多实际应用中。

相关推荐
爱吃生蚝的于勒2 小时前
C语言内存函数
c语言·开发语言·数据结构·c++·学习·算法
yaosheng_VALVE7 小时前
稀硫酸介质中 V 型球阀的材质选择与选型要点-耀圣
运维·spring cloud·自动化·intellij-idea·材质·1024程序员节
workflower8 小时前
数据结构练习题和答案
数据结构·算法·链表·线性回归
一个不喜欢and不会代码的码农8 小时前
力扣105:从先序和中序序列构造二叉树
数据结构·算法·leetcode
网安_秋刀鱼10 小时前
java组件安全
web安全·网络安全·1024程序员节
earthzhang202110 小时前
《深入浅出HTTPS》读书笔记(7):安全的密码学Hash算法
网络·网络协议·http·https·1024程序员节
No0d1es10 小时前
2024年9月青少年软件编程(C语言/C++)等级考试试卷(九级)
c语言·数据结构·c++·算法·青少年编程·电子学会
bingw011410 小时前
华为机试HJ42 学英语
数据结构·算法·华为
Yanna_12345611 小时前
数据结构小项目
数据结构
木辛木辛子12 小时前
L2-2 十二进制字符串转换成十进制整数
c语言·开发语言·数据结构·c++·算法