2025.3.2机器学习笔记:PINN文献阅读沿海地区人口增长,人类面临飓风和洪水等自然灾害风险增大。气候变化加剧极端风暴潮、降水及海平面上升,使洪水风险进一步提升,研究潮汐河流动力学对减轻洪灾风险至关重要。按照传统的方法,大规模河流模型是气候变化研究的重要工具,但在模拟局部洪水过程时存在不足。其物理可解释性和网格分辨率低,无法解析洪水泛滥的详细信息;统计和动力降尺度方法,但在河流建模中应用有限。传统线性插值降尺度方法无法解决网格单元内空间变化的水流问题。为解决以上问题,本文提出基于物理信息神经网络的机器学习框架,用于模拟大尺度河流模型在沿海地区的亚