这篇博客是之前文章:
- Elasticsearch:使用 Open AI 和 Langchain 的 RAG - Retrieval Augmented Generation (一)
- Elasticsearch:使用 Open AI 和 Langchain 的 RAG - Retrieval Augmented Generation (二)
- Elasticsearch:使用 Open AI 和 Langchain 的 RAG - Retrieval Augmented Generation (三)
的续篇。在这篇文章中,我们将学习如何把从 Elasticsearch 搜索到的结果传递到大数据模型以得到更好的结果。
如果你还没有创建好自己的环境,请参考第一篇文章进行详细地安装。
创建应用并展示
安装包
bash
#!pip3 install langchain
导入包
javascript
1. from dotenv import load_dotenv
2. from langchain.embeddings import OpenAIEmbeddings
3. from langchain.vectorstores import ElasticsearchStore
4. from langchain.text_splitter import CharacterTextSplitter
5. from langchain.prompts import ChatPromptTemplate
6. from langchain.prompts import PromptTemplate
7. from langchain.chat_models import ChatOpenAI
8. from langchain.schema.output_parser import StrOutputParser
9. from langchain.schema.runnable import RunnablePassthrough
10. from langchain.schema.runnable import RunnableLambda
11. from langchain.schema import HumanMessage
12. from urllib.request import urlopen
13. import os, json
15. load_dotenv()
17. openai_api_key=os.getenv('OPENAI_API_KEY')
18. elastic_user=os.getenv('ES_USER')
19. elastic_password=os.getenv('ES_PASSWORD')
20. elastic_endpoint=os.getenv("ES_ENDPOINT")
21. elastic_index_name='langchain-rag'
添加文档并将文档分成段落
python
1. with open('workplace-docs.json') as f:
2. workplace_docs = json.load(f)
4. print(f"Successfully loaded {len(workplace_docs)} documents")
css
1. metadata = []
2. content = []
4. for doc in workplace_docs:
5. content.append(doc["content"])
6. metadata.append({
7. "name": doc["name"],
8. "summary": doc["summary"],
9. "rolePermissions":doc["rolePermissions"]
10. })
12. text_splitter = CharacterTextSplitter(chunk_size=50, chunk_overlap=0)
13. docs = text_splitter.create_documents(content, metadatas=metadata)
Index Documents using ELSER - SparseVectorRetrievalStrategy()
ini
1. from elasticsearch import Elasticsearch
3. url = f"https://{elastic_user}:{elastic_password}@{elastic_endpoint}:9200"
4. connection = Elasticsearch(url, ca_certs = "./http_ca.crt", verify_certs = True)
6. es = ElasticsearchStore.from_documents(
7. docs,
8. es_url = url,
9. es_connection = connection,
10. es_user=elastic_user,
11. es_password=elastic_password,
12. index_name=elastic_index_name,
13. strategy=ElasticsearchStore.SparseVectorRetrievalStrategy()
14. )
如果你还没有配置好自己的 ELSER,请参考之前的文章 " Elasticsearch:使用 Open AI 和 Langchain 的 RAG - Retrieval Augmented Generation (三)"。
在执行完上面的命令后,我们可以在 Kibana 中进行查看:
展示结果
lua
1. def showResults(output):
2. print("Total results: ", len(output))
3. for index in range(len(output)):
4. print(output[index])
Search
ini
1. r = es.similarity_search("work from home policy")
2. showResults(r)
RAG with Elasticsearch - Method 1 (Using Retriever)
ini
1. retriever = es.as_retriever(search_kwargs={"k": 4})
3. template = """Answer the question based only on the following context:
4. {context}
6. Question: {question}
7. """
8. prompt = ChatPromptTemplate.from_template(template)
10. chain = (
11. {"context": retriever, "question": RunnablePassthrough()}
12. | prompt
13. | ChatOpenAI()
14. | StrOutputParser()
15. )
17. chain.invoke("vacation policy")
RAG with Elasticsearch - Method 2 (Without Retriever)
Add Context
ini
1. def add_context(question: str):
2. r = es.similarity_search(question)
4. context = "\n".join(x.page_content for x in r)
6. return context
Chain
ini
1. template = """Answer the question based only on the following context:
2. {context}
4. Question: {question}
5. """
7. prompt = ChatPromptTemplate.from_template(template)
9. chain = (
10. {"context": RunnableLambda(add_context), "question": RunnablePassthrough()}
11. | prompt
12. | ChatOpenAI()
13. | StrOutputParser()
14. )
16. chain.invoke("canada employees guidelines")
Compare with RAG and without RAG
ini
1. q = input("Ask Question: ")
3. ## Question to OpenAI
5. chat = ChatOpenAI()
7. messages = [
8. HumanMessage(
9. content=q
10. )
11. ]
13. gpt_res = chat(messages)
15. # Question with RAG
17. gpt_rag_res = chain.invoke(q)
20. # Responses
22. s = f"""
23. ChatGPT Response:
25. {gpt_res}
27. ChatGPT with RAG Response:
29. {gpt_rag_res}
30. """
32. print(s)
上面的 jupyter notebook 的代码可以在地址 github.com/liu-xiao-gu... 下载。