KNN-水仙花的分类

题目:

思路:

1、处理数据集,这里用的是题目已知的数据集,所以说需要提前将写好的数据放到excel表格里,再进行读取。

2、将数据集划分为训练集和测试集

3、定义K-NN模型。

4、训练模型

5、预测模型

6、计算分类精度

7、使用网格搜索法

8、训练模型

9、可视化

结果:

大致就是这样,代码如下:

python 复制代码
#加载数据集
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.neighbors import KNeighborsClassifier
import warnings
warnings.filterwarnings('ignore')

import matplotlib
print(matplotlib.matplotlib_fname())

# 加载数据集
def read():
    filename = r"水仙花.xlsx"
    data = pd.read_excel(filename, header=None)
    x1 = data.iloc[1:, [0, 1]].values
    x2 = data.iloc[1:, [3, 4]].values
    # print(x2)
    y1 = data.iloc[1:, 2].values
    y2 = data.iloc[1:, 5].values
    X = np.vstack((x1, x2))  # 竖向合并
    y = np.hstack((y1, y2))  # 横向合并
    y = y.astype(int)
    return X, y
# 划分训练集和测试集
X,y=read()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# 定义K-NN模型
knn = KNeighborsClassifier(n_neighbors=3)  # 设置k=3
#训练模型
knn.fit(X_train, y_train)
#预测测试集
y_pred = knn.predict(X_test)
#计算分类精度
accuracy = accuracy_score(y_test, y_pred)
print('分类精度:', accuracy)

# 使用网格搜索找到最佳参数
param_grid = {'n_neighbors': [1,3, 5, 7, 9]}  # 尝试不同的k值
grid_search = GridSearchCV(knn, param_grid, cv=5)
#训练模型
grid_search.fit(X_train, y_train)
print('最佳参数:', grid_search.best_params_)
print('最佳分类精度:', grid_search.best_score_)
#可视化
#绘制散点图
cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF'])
cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF'])

x_min, x_max = X[:, 0].min() - 0.1, X[:, 0].max() + 0.1
y_min, y_max = X[:, 1].min() - 0.1, X[:, 1].max() + 0.1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02), np.arange(y_min, y_max, 0.02))
Z = knn.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)

plt.figure()
plt.pcolormesh(xx, yy, Z, cmap=cmap_light)
# 绘制训练样本和测试样本
plt.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cmap_bold, edgecolor='k')
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cmap_bold, marker='x', edgecolor='k')

plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.title('K-NN分类(k=3)')
plt.show()

可能出现的问题:

图片中中文无法显现,原因是配置文件中没有配置中文库,解决办法:

首先打印出配置文件所在的目录:

代码如下:

python 复制代码
import matplotlib
print(matplotlib.matplotlib_fname())

然后根据地址找到相应文件,ctr+f搜索font.family,找到下面图片中的两行

然后,将其注释符号全部删掉,并在font.sans-serif中添加中文字体名称

这样再重新运行程序代码即可。

相关推荐
鹏大师运维3 小时前
【功能介绍】信创终端系统上各WPS版本的授权差异
linux·wps·授权·麒麟·国产操作系统·1024程序员节·统信uos
亦枫Leonlew3 小时前
微积分复习笔记 Calculus Volume 1 - 4.7 Applied Optimization Problems
笔记·数学·微积分·1024程序员节
小肥象不是小飞象3 小时前
(六千字心得笔记)零基础C语言入门第八课——函数(上)
c语言·开发语言·笔记·1024程序员节
一个通信老学姐12 小时前
专业130+总400+武汉理工大学855信号与系统考研经验电子信息与通信工程,真题,大纲,参考书。
考研·信息与通信·信号处理·1024程序员节
力姆泰克13 小时前
看电动缸是如何提高农机的自动化水平
大数据·运维·服务器·数据库·人工智能·自动化·1024程序员节
力姆泰克13 小时前
力姆泰克电动缸助力农业机械装备,提高农机的自动化水平
大数据·服务器·数据库·人工智能·1024程序员节
程思扬14 小时前
为什么Uptime+Kuma本地部署与远程使用是网站监控新选择?
linux·服务器·网络·经验分享·后端·网络协议·1024程序员节
转世成为计算机大神14 小时前
网关 Spring Cloud Gateway
java·网络·spring boot·1024程序员节
paopaokaka_luck14 小时前
基于Spring Boot+Vue的助农销售平台(协同过滤算法、限流算法、支付宝沙盒支付、实时聊天、图形化分析)
java·spring boot·小程序·毕业设计·mybatis·1024程序员节
幼儿园园霸柒柒15 小时前
第七章: 7.3求一个3*3的整型矩阵对角线元素之和
c语言·c++·算法·矩阵·c#·1024程序员节