论文阅读——RoBERTa

一、LM效果好但是各种方法之间细致比较有挑战性,因为训练耗费资源多、并且在私有的不同大小的数据集上训练,不同超参数选择对结果影响很大。使用复制研究的方法对BERT预训练的超参数和数据集的影响细致研究,发现BERT训练不够,提出训练BERT的方法RoBERTa。

RoBERTa方法:

1、训练更长时间、数据集更大

2、移除NSP任务

3、在更长的序列上训练:We train only with full-length sequences.

4、动态mask

RoBERTa is trained with dynamic masking, FULL-SENTENCES without NSP loss, large mini-batches and a larger byte-level BPE.

BPE:

单词级和字符级混合表示。Byte-Pair Encoding (BPE) is a hybrid between character- and word-level representations.

BPE依赖于通过对训练语料库进行统计分析来提取的子词单元,而不是全词。

BPE词汇表的大小通常从10K-100K子字单元。Radford等介绍了BPE的一种巧妙实现,该实现使用字节而不是单代码字符作为基本子字单元。使用字节使学习一个中等大小(50千个单位)的子单词词汇成为可能,它仍然可以对任何输入文本进行编码,而不引入任何"未知"标记。

最初的BERT实现使用大小为30K的字符级BPE词汇表,该词汇表是在使用启发式标记化规则对输入进行预处理后学习的。RoBERTa使用包含50K子词单元的较大字节级BPE词汇表来训练BERT,而无需对输入进行任何额外的预处理或标记化。这分别为BERTBASE和BERTLARGE增加了约15M和20M的额外参数。

二、RoBERTa预训练数据:

BOOKCORPUS plus English WIKIPEDIA.(16G,BERT used)

CC-NEWS collected from the English portion of the CommonCrawl News dataset(76GB after filtering)

OPENWEBTEXT(38G)

STORIES(31G)

三、RoBERTa下游任务微调数据

GLUE

SQuAD: V1.1 and V2.0

RACE

相关推荐
FL16238631299 小时前
如何使用目标检测深度学习框架yolov8训练钢管管道表面缺陷VOC+YOLO格式1159张3类别的检测数据集步骤和流程
深度学习·yolo·目标检测
网安INF10 小时前
深度学习中批标准化与神经网络调优
人工智能·深度学习·神经网络·机器学习
归去_来兮12 小时前
Transformer模型原理概述
人工智能·深度学习·transformer
酌沧12 小时前
深度学习 必然用到的 微积分知识
人工智能·深度学习
码字的字节12 小时前
深入理解Transformer架构:从理论到实践
深度学习·架构·transformer
神经星星14 小时前
AI 论文周报 | Chai-2刷新抗体设计效率,命中率提高100倍;多篇ICML入围论文一键速览
人工智能·深度学习·机器学习
昵称是6硬币16 小时前
(DETR)End-to-End Object Detection with Transformers论文精读(逐段解析)
人工智能·深度学习·目标检测·计算机视觉·transformer
通街市密人有18 小时前
PanTS: The Pancreatic Tumor Segmentation Dataset
人工智能·深度学习·计算机视觉
九章云极AladdinEdu20 小时前
冷冻电镜重构的GPU加速破局:从Relion到CryoSPARC的并行重构算法
人工智能·pytorch·深度学习·机器学习·自然语言处理·架构·gpu算力
clz131452121 小时前
二,神经网络
人工智能·深度学习·神经网络