论文阅读——RoBERTa

一、LM效果好但是各种方法之间细致比较有挑战性,因为训练耗费资源多、并且在私有的不同大小的数据集上训练,不同超参数选择对结果影响很大。使用复制研究的方法对BERT预训练的超参数和数据集的影响细致研究,发现BERT训练不够,提出训练BERT的方法RoBERTa。

RoBERTa方法:

1、训练更长时间、数据集更大

2、移除NSP任务

3、在更长的序列上训练:We train only with full-length sequences.

4、动态mask

RoBERTa is trained with dynamic masking, FULL-SENTENCES without NSP loss, large mini-batches and a larger byte-level BPE.

BPE:

单词级和字符级混合表示。Byte-Pair Encoding (BPE) is a hybrid between character- and word-level representations.

BPE依赖于通过对训练语料库进行统计分析来提取的子词单元,而不是全词。

BPE词汇表的大小通常从10K-100K子字单元。Radford等介绍了BPE的一种巧妙实现,该实现使用字节而不是单代码字符作为基本子字单元。使用字节使学习一个中等大小(50千个单位)的子单词词汇成为可能,它仍然可以对任何输入文本进行编码,而不引入任何"未知"标记。

最初的BERT实现使用大小为30K的字符级BPE词汇表,该词汇表是在使用启发式标记化规则对输入进行预处理后学习的。RoBERTa使用包含50K子词单元的较大字节级BPE词汇表来训练BERT,而无需对输入进行任何额外的预处理或标记化。这分别为BERTBASE和BERTLARGE增加了约15M和20M的额外参数。

二、RoBERTa预训练数据:

BOOKCORPUS plus English WIKIPEDIA.(16G,BERT used)

CC-NEWS collected from the English portion of the CommonCrawl News dataset(76GB after filtering)

OPENWEBTEXT(38G)

STORIES(31G)

三、RoBERTa下游任务微调数据

GLUE

SQuAD: V1.1 and V2.0

RACE

相关推荐
深鱼~几秒前
Attention机制加速实战:基于ops-transformer的性能优化
深度学习·性能优化·transformer·cann
慢半拍iii3 分钟前
对比分析:ops-nn与传统深度学习框架算子的差异
人工智能·深度学习·ai·cann
心疼你的一切5 分钟前
解构CANN仓库:AIGC API从底层逻辑到实战落地,解锁国产化AI生成算力
数据仓库·人工智能·深度学习·aigc·cann
薯一个蜂蜜牛奶味的愿13 分钟前
模块化显示神经网络结构的可视化工具--BlockShow
人工智能·深度学习·神经网络
心疼你的一切16 分钟前
基于CANN仓库算力手把手实现Stable Diffusion图像生成(附完整代码+流程图)
数据仓库·深度学习·stable diffusion·aigc·流程图·cann
心疼你的一切37 分钟前
代码革命:CANN加速的AI编程助手实战
数据仓库·深度学习·aigc·ai编程·cann
杜子不疼.41 分钟前
CANN图引擎GE的编译优化与高效执行机制深度解析
人工智能·深度学习
算法狗242 分钟前
大模型面试题:大模型的训练和推理中显存和计算量的情况
人工智能·深度学习·机器学习·语言模型
心疼你的一切1 小时前
三维创世:CANN加速的实时3D内容生成
数据仓库·深度学习·3d·aigc·cann
小羊不会打字1 小时前
探索 CANN 生态:深入解析 `ops-transformer` 项目
人工智能·深度学习·transformer