2023-ICLR-Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning

2023-ICLR-Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning

Paper:https://openreview.net/forum?id=lq62uWRJjiY

Code:https://github.com/QingruZhang/AdaLoRA

自适应计算分配,实现参数高效微调

为了实现动态地调节Lora的rank的大小,首先将Lora改写为SVD的形式。这是对LoRA的一种改进,它根据重要性评分动态分配参数预算给权重矩阵。

调整增量矩分配。AdaLoRA将关键的增量矩阵分配高秩以捕捉更精细和任务特定的信息,而将较不重要的矩阵的秩降低,以防止过拟合并节省计算预算。

以奇异值分解的形式对增量更新进行参数化,并根据重要性指标裁剪掉不重要的奇异值,同时保留奇异向量。由于对一个大矩阵进行精确SVD分解的计算消耗非常大,这种方法通过减少它们的参数预算来加速计算,同时,保留未来恢复的可能性并稳定训练。

W = W ( 0 ) + Δ = W ( 0 ) + P Λ Q W=W^{(0)}+\Delta=W^{(0)}+P \Lambda Q W=W(0)+Δ=W(0)+PΛQ

在训练损失中添加了额外的惩罚项,以规范奇异矩阵P和Q的正交性,从而避免SVD的大量计算并稳定训练。

相关推荐
知乎的哥廷根数学学派8 小时前
基于多模态特征融合和可解释性深度学习的工业压缩机异常分类与预测性维护智能诊断(Python)
网络·人工智能·pytorch·python·深度学习·机器学习·分类
梦梦代码精9 小时前
《全栈开源智能体:终结企业AI拼图时代》
人工智能·后端·深度学习·小程序·前端框架·开源·语音识别
kebijuelun10 小时前
FlashInfer-Bench:把 AI 生成的 GPU Kernel 放进真实 LLM 系统的“闭环引擎”
人工智能·gpt·深度学习·机器学习·语言模型
亚里随笔12 小时前
超越LoRA:参数高效强化学习方法的全面评估与突破
人工智能·深度学习·机器学习·lora·rl
雍凉明月夜13 小时前
深度学习之目标检测yolo算法Ⅱ(v4)
深度学习·算法·yolo·目标检测
一瞬祈望14 小时前
⭐ 深度学习入门体系(第 20 篇): 如何从 0 到 1 训练一个稳定、可复现的深度学习模型
人工智能·深度学习
lkbhua莱克瓦2414 小时前
RAG到RGA:生成式AI的范式演进
人工智能·llm·prompt·大语言模型·rag·rga
燕双嘤14 小时前
深度学习:激活函数,优化器
人工智能·深度学习
HyperAI超神经15 小时前
实现高选择性底物设计,MIT联手哈佛用生成式AI发现全新蛋白酶切割模式
人工智能·深度学习·机器学习·开源·ai编程
山土成旧客15 小时前
【Python学习打卡-Day42】打开深度学习“黑箱”:从Hook回调到Grad-CAM可视化
python·深度学习·学习