2023-ICLR-Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning

2023-ICLR-Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning

Paper:https://openreview.net/forum?id=lq62uWRJjiY

Code:https://github.com/QingruZhang/AdaLoRA

自适应计算分配,实现参数高效微调

为了实现动态地调节Lora的rank的大小,首先将Lora改写为SVD的形式。这是对LoRA的一种改进,它根据重要性评分动态分配参数预算给权重矩阵。

调整增量矩分配。AdaLoRA将关键的增量矩阵分配高秩以捕捉更精细和任务特定的信息,而将较不重要的矩阵的秩降低,以防止过拟合并节省计算预算。

以奇异值分解的形式对增量更新进行参数化,并根据重要性指标裁剪掉不重要的奇异值,同时保留奇异向量。由于对一个大矩阵进行精确SVD分解的计算消耗非常大,这种方法通过减少它们的参数预算来加速计算,同时,保留未来恢复的可能性并稳定训练。

W = W ( 0 ) + Δ = W ( 0 ) + P Λ Q W=W^{(0)}+\Delta=W^{(0)}+P \Lambda Q W=W(0)+Δ=W(0)+PΛQ

在训练损失中添加了额外的惩罚项,以规范奇异矩阵P和Q的正交性,从而避免SVD的大量计算并稳定训练。

相关推荐
Work(沉淀版)2 小时前
DAY 40
人工智能·深度学习·机器学习
拾忆-eleven3 小时前
NLP学习路线图(二十六):自注意力机制
人工智能·深度学习
MYH5164 小时前
在NLP文本处理中,将字符映射到阿拉伯数字(构建词汇表vocab)的核心目的和意义
人工智能·深度学习·自然语言处理
狂小虎7 小时前
02 Deep learning神经网络的编程基础 逻辑回归--吴恩达
深度学习·神经网络·逻辑回归
猫天意8 小时前
【深度学习】为什么2个3×3的卷积可以相当于一个5×5的卷积核?为什么3个3×3的卷积相当于一个7×7的卷积核,到底区别在哪里?我们该如何使用?
人工智能·深度学习·神经网络·目标检测·视觉检测
阔跃生物9 小时前
Nature Methods | OmiCLIP:整合组织病理学与空间转录组学的AI模型
人工智能·深度学习·机器学习
Mrs.Gril9 小时前
RKNN3588上部署 RTDETRV2
深度学习·yolo·rknn·rtdetr
Ama_tor10 小时前
14.AI搭建preparationのBERT预训练模型进行文本分类
人工智能·深度学习·bert
QQ6765800810 小时前
基于 PyTorch 的 VGG16 深度学习人脸识别检测系统的实现+ui界面
人工智能·pytorch·python·深度学习·ui·人脸识别
Blossom.11811 小时前
量子通信:从科幻走向现实的未来通信技术
人工智能·深度学习·目标检测·机器学习·计算机视觉·语音识别·量子计算