2023-ICLR-Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning

2023-ICLR-Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning

Paper:https://openreview.net/forum?id=lq62uWRJjiY

Code:https://github.com/QingruZhang/AdaLoRA

自适应计算分配,实现参数高效微调

为了实现动态地调节Lora的rank的大小,首先将Lora改写为SVD的形式。这是对LoRA的一种改进,它根据重要性评分动态分配参数预算给权重矩阵。

调整增量矩分配。AdaLoRA将关键的增量矩阵分配高秩以捕捉更精细和任务特定的信息,而将较不重要的矩阵的秩降低,以防止过拟合并节省计算预算。

以奇异值分解的形式对增量更新进行参数化,并根据重要性指标裁剪掉不重要的奇异值,同时保留奇异向量。由于对一个大矩阵进行精确SVD分解的计算消耗非常大,这种方法通过减少它们的参数预算来加速计算,同时,保留未来恢复的可能性并稳定训练。

W = W ( 0 ) + Δ = W ( 0 ) + P Λ Q W=W^{(0)}+\Delta=W^{(0)}+P \Lambda Q W=W(0)+Δ=W(0)+PΛQ

在训练损失中添加了额外的惩罚项,以规范奇异矩阵P和Q的正交性,从而避免SVD的大量计算并稳定训练。

相关推荐
weixin_3954489120 小时前
loaderr
人工智能·深度学习·机器学习
强盛小灵通专卖员20 小时前
船舶轨迹预测实验辅导一站式
人工智能·深度学习·sci·ei会议·船舶轨迹预测·ais数据
狮子座明仔20 小时前
CiteFix: 通过后处理引用校正提升RAG系统准确率
人工智能·深度学习·ai·语言模型·自然语言处理
AI 智能服务20 小时前
第2课___结构化输出与 Prompt 设计
人工智能·机器学习·prompt
云蝠呼叫大模型联络中心20 小时前
BATH不再一家独大?深入测评2026大模型呼叫市场新秩序
人工智能·深度学习·神经网络·自然语言处理·nlp·语音识别·信息与通信
金融小师妹20 小时前
AI驱动的制造业周期分析:基于ISM-PMI动态模型的美12月制造业收缩归因与库存周期预测
大数据·人工智能·深度学习
Hcoco_me21 小时前
大模型面试题44:注意力机制的三代进化MHA/MQA/GQA
人工智能·深度学习·自然语言处理·transformer·word2vec
滴啦嘟啦哒21 小时前
【机械臂】【视觉】一、加入摄像机并实现世界坐标与像素坐标的互相转换
python·深度学习·vla
盼小辉丶21 小时前
Transformer实战(33)——高效自注意力机制
深度学习·transformer·高效自注意力机制
啊巴矲21 小时前
小白从零开始勇闯人工智能:深度学习初级篇(卷积神经网络上)
人工智能·深度学习·cnn