YOLOv5 分类模型的预处理

YOLOv5 分类模型的预处理

flyfish

版本 6.2

将整个代码简化成如下代码

py 复制代码
imgsz=224
file = "/home/a/Pictures/1.jpg"
transforms = classify_transforms(imgsz)
im = cv2.cvtColor(cv2.imread(file), cv2.COLOR_BGR2RGB)
print(im.shape)

im = transforms(im)
print(im.shape)

im = im.unsqueeze(0).to("cpu")
print(im.shape)

(511, 306, 3) H,W,C顺序

torch.Size([3, 224, 224]) 经过transforms后

torch.Size([1, 3, 224, 224]) 通过unsqueeze扩展增加一维,最后是NCHW的维度进入模型

图像经过了如下变换

python 复制代码
def classify_transforms(size=224):
    # Transforms to apply if albumentations not installed
    return T.Compose([T.ToTensor(), T.Resize(size), T.CenterCrop(size), T.Normalize(IMAGENET_MEAN, IMAGENET_STD)])

最重要的是这两个

py 复制代码
T.Resize(size)
T.CenterCrop(size)

分步演示

T.Resize(size) 图像的缩放

看一个参数还是两个参数

如果是一个参数int,那么图像的较小边将与该参数匹配,然后进行缩放,高宽比例不变。

如果是(h, w),那么图像就缩放到(h, w)大小。

举个例子

如果 height > width 那么图片会被缩放到 (size * height / width, size).比例不变

参考:https://pytorch.org/vision/main/generated/torchvision.transforms.Resize.html

复制代码
import matplotlib.pyplot as plt
from PIL import Image
from torchvision import transforms

file_path = "./1.jpg"
img = Image.open(file)
print("Original:", img.size)

用了PIL库 是 宽w,高h 顺序

原始大小 宽w,高h Original: (306, 511)

复制代码
trans0 = transforms.Compose([transforms.Resize(imgsz)]) 
after0 = trans0(img)

print("Resize:", after0.size)
after0.save('2.jpg')

经过Resize之后 宽w,高h Resize: (224, 374)

复制代码
trans1 = transforms.Compose([transforms.CenterCrop(imgsz)])
after1 = trans1(after0)
print("CenterCrop:", after1.size)
after1.save('3.jpg')

经过中心剪裁后 CenterCrop: (224, 224)

相关推荐
极智视界6 小时前
无人机场景 - 目标检测数据集 - 停车场停车位检测数据集下载
yolo·目标检测·数据集·无人机·voc·coco·算法训练
前网易架构师-高司机10 小时前
带标注信息的手机识别数据集,92.8%识别率,可识别户外公共场所的人是否带手机,支持yolo, coco json,pascal voc xml格式
yolo·手机·数据集·公共·户外·携带
Faker66363aaa11 小时前
基于YOLOv8-P2的稻田杂草智能分割与识别系统
yolo
极智视界12 小时前
目标检测数据集 - 空中固定翼无人机检测数据集下载
yolo·目标检测·数据集·无人机·voc·coco·算法训练
ASD123asfadxv14 小时前
YOLOv10n-RepVit实现螺钉螺母智能检测与计数系统
yolo
Faker66363aaa15 小时前
基于YOLO11-Seg-EfficientViT的书籍缺陷检测与分类系统详解
人工智能·分类·数据挖掘
你再说一遍?36416 小时前
计算机视觉实训作业记录:基于 YOLOv12 的水下目标检测模型优化与实现
yolo·目标检测·计算机视觉
LASDAaaa123117 小时前
红外图像中的鸟类目标检测:YOLOv5-SPDConv改进实践
yolo·目标检测·目标跟踪
2501_9413370617 小时前
蓝莓成熟度自动检测与分类_基于YOLO11-C3k2-AdditiveBlock-CGLU的深度学习实现
深度学习·分类·数据挖掘
Testopia17 小时前
AI编程实例 - 爆款文章预测:K-Means聚类与分类算法的实践
人工智能·分类·kmeans·ai编程·聚类