YOLOv5 分类模型的预处理

YOLOv5 分类模型的预处理

flyfish

版本 6.2

将整个代码简化成如下代码

py 复制代码
imgsz=224
file = "/home/a/Pictures/1.jpg"
transforms = classify_transforms(imgsz)
im = cv2.cvtColor(cv2.imread(file), cv2.COLOR_BGR2RGB)
print(im.shape)

im = transforms(im)
print(im.shape)

im = im.unsqueeze(0).to("cpu")
print(im.shape)

(511, 306, 3) H,W,C顺序

torch.Size([3, 224, 224]) 经过transforms后

torch.Size([1, 3, 224, 224]) 通过unsqueeze扩展增加一维,最后是NCHW的维度进入模型

图像经过了如下变换

python 复制代码
def classify_transforms(size=224):
    # Transforms to apply if albumentations not installed
    return T.Compose([T.ToTensor(), T.Resize(size), T.CenterCrop(size), T.Normalize(IMAGENET_MEAN, IMAGENET_STD)])

最重要的是这两个

py 复制代码
T.Resize(size)
T.CenterCrop(size)

分步演示

T.Resize(size) 图像的缩放

看一个参数还是两个参数

如果是一个参数int,那么图像的较小边将与该参数匹配,然后进行缩放,高宽比例不变。

如果是(h, w),那么图像就缩放到(h, w)大小。

举个例子

如果 height > width 那么图片会被缩放到 (size * height / width, size).比例不变

参考:https://pytorch.org/vision/main/generated/torchvision.transforms.Resize.html

复制代码
import matplotlib.pyplot as plt
from PIL import Image
from torchvision import transforms

file_path = "./1.jpg"
img = Image.open(file)
print("Original:", img.size)

用了PIL库 是 宽w,高h 顺序

原始大小 宽w,高h Original: (306, 511)

复制代码
trans0 = transforms.Compose([transforms.Resize(imgsz)]) 
after0 = trans0(img)

print("Resize:", after0.size)
after0.save('2.jpg')

经过Resize之后 宽w,高h Resize: (224, 374)

复制代码
trans1 = transforms.Compose([transforms.CenterCrop(imgsz)])
after1 = trans1(after0)
print("CenterCrop:", after1.size)
after1.save('3.jpg')

经过中心剪裁后 CenterCrop: (224, 224)

相关推荐
一百天成为python专家11 小时前
python爬虫入门(小白五分钟从入门到精通)
开发语言·爬虫·python·opencv·yolo·计算机视觉·正则表达式
Francek Chen14 小时前
【深度学习计算机视觉】13:实战Kaggle比赛:图像分类 (CIFAR-10)
深度学习·计算机视觉·分类
JANGHIGH16 小时前
YOLO系列——OpenCV DNN模块在YOLOv11检测物体时输出的边界框坐标问题
opencv·yolo·dnn
宁若风16 小时前
如何将yolov5模型部署到RK3588开发板上
yolo
盼小辉丶17 小时前
TensorFlow深度学习实战——节点分类
深度学习·分类·tensorflow·图神经网络
尤超宇18 小时前
YOLOv3 目标检测算法核心技术
算法·yolo·目标检测
成为深度学习高手18 小时前
DGCN+informer分类预测模型
人工智能·分类·数据挖掘
Sunhen_Qiletian18 小时前
卷积神经网络搭建实战(二)——基于PyTorch框架和本地自定义图像数据集的食物分类案例(附输入图片预测功能)
pytorch·分类·cnn
1373i18 小时前
【Yolo】快速上手Yolo实战
yolo
max50060020 小时前
多GPU数据并行训练中GPU利用率不均衡问题深度分析与解决方案
人工智能·机器学习·分类·数据挖掘