把大模型当“温度计”——基于 LLM 的分布式系统异常根因定位实战

标签:AIOps、根因定位、可观测性、日志聚类、LLM、向量检索、Prometheus、ELK


  1. 背景:凌晨 3 点的 P0,定位 2 小时?

某电商大促,上千微服务并发飙升,告警电话连环轰炸:

• Prometheus 500+ 指标飘红;

• ELK 日志 10 GB/min 疯狂刷屏;

• 最终人工翻日志 2 小时才定位到 一个配置中心超时。

领导发话:"能不能 5 分钟自动告诉我是哪一行配置?"

于是我们把 大模型 变成了 分布式系统的"温度计",直接读出异常根因。


  1. 技术方案:LLM + 向量检索 + 层次聚类

模块 选型 作用

日志/指标采集 Filebeat + OTel 统一 Schema

向量编码 Sentence-Transformer-Mini 日志 → 512 维

向量库 Qdrant + HNSW 毫秒级搜索

根因推理 Llama3-8B-LoRA 5-shot prompt

结果排序 Cross-Encoder 重排 Top-3 根因


  1. 流水线:3 步 5 分钟闭环

  2. 异常检测:Prometheus Rule → 触发事件

  3. 日志聚类:向量检索 + 层次聚类 → 100 条 → 5 条聚类中心

  4. LLM 根因:5-shot prompt → JSON 输出 {service, file, line, reason}


  1. Prompt 模板(可直接抄)

你是一名 SRE 专家,根据下面异常聚类日志,给出根因:

日志1\] \[日志2\] \[日志3\] \[日志4\] \[日志5

返回 JSON:{"service":"xxx","file":"yyy","line":123,"reason":"..."}


  1. 代码速览(核心 80 行)
python 复制代码
# root_cause.py
from qdrant_client import QdrantClient
from transformers import pipeline
import json

client = QdrantClient(":memory:")  # 临时内存库
llm = pipeline("text-generation", model="llama3-8b-lora")

def search_logs(query, top_k=100):
    hits = client.search("logs", query_vector=encode(query), limit=top_k)
    return [h.payload["raw"] for h in hits]

def cluster_and_rank(logs):
    centers = h_cluster(logs, k=5)
    prompt = build_prompt(centers)
    return json.loads(llm(prompt, max_new_tokens=128)[0]["generated_text"])

if __name__ == "__main__":
    print(cluster_and_rank(search_logs("timeout")))

  1. 实测案例

场景 输入 输出根因 耗时

配置中心超时 500 条日志 `{"service":"config","file":"client.go","line":88,"reason":"连接池耗尽"}` 3 min

缓存击穿 1200 条日志 `{"service":"cache","file":"redis.go","line":42,"reason":"未设置随机过期时间"}` 4 min


  1. 性能 & 成本

指标 数值 备注

日志向量库 1.2 GB 7 天滚动

LLM 推理 14 tokens/s RTX 4090

单次根因 0.8 元 OpenAI 3.5 API

私有化 单卡 4090 成本 1.5 万


  1. 踩坑 & 调优

坑 解决

日志格式不统一 Filebeat processors 统一 JSON

向量检索噪声 Cross-Encoder 重排 Top-10

LLM 幻觉 返回 JSON Schema 校验 + 重试


  1. 一键部署
bash 复制代码
git clone https://github.com/sre-ai/root-cause
docker-compose up -d
# 浏览器打开 http://localhost:3000

  1. 结语:让根因定位从 2 小时到 2 分钟

当异常日志不再靠人工"肉眼扫描",

当大模型成为 SRE 的"温度计",

你会发现 "5 分钟恢复"不再是 KPI,而是日常。

如果这篇文章帮你少背一次锅,欢迎去仓库点个 Star ⭐;

也欢迎留言聊聊你让 LLM 定位过最离谱的根因!

相关推荐
R-G-B31 分钟前
【P27 4-8】OpenCV Python——Mat类、深拷贝(clone、copyTo、copy)、浅拷贝,原理讲解与示例代码
人工智能·python·opencv·浅拷贝·深拷贝·opencv python·mat类
ABCDnnie39 分钟前
机器学习03-sklearn模型评估指标与knn算法
人工智能·机器学习·sklearn
黎燃40 分钟前
智能制造中的AI预测性维护:从理论到实战的深度解析
人工智能
zskj_zhyl1 小时前
银发经济时代:科技赋能养老,温情守护晚年,让老人不再孤独无助
大数据·人工智能·科技·生活
Qforepost1 小时前
智汇河套,量子“风暴”:量子科技未来产业发展论坛深度研讨加速产业成果转化
人工智能·量子计算·量子
coding者在努力1 小时前
从零开始:用PyTorch实现线性回归模型
人工智能·pytorch·线性回归
Giser探索家1 小时前
低空智航平台技术架构深度解析:如何用AI +空域网格破解黑飞与安全管控难题
大数据·服务器·前端·数据库·人工智能·安全·架构
静心问道1 小时前
CacheBlend:结合缓存知识融合的快速RAG大语言模型推理服务
人工智能·语言模型·模型加速
云卓SKYDROID1 小时前
无人机智能返航模块技术分析
人工智能·数码相机·无人机·高科技·云卓科技
Websites1 小时前
Hyperf 百度翻译接口实现方案
开发语言·自然语言处理·php·自动翻译