Pytorch 缓解过拟合和网络退化

一 添加BN模块

BN模块应该添加 激活层前面

在模型实例化后,我们需要对BN层进行初始化。PyTorch中的BN层是通过nn.BatchNorm1d或nn.BatchNorm2d类来实现的。

bn = nn.BatchNorm1d(20) #

对于1D输入数据,使用nn.BatchNorm1d;对于2D输入数据,使用nn.BatchNorm2d

在模型的前向传播过程中,我们需要将BN层应用到适当的位置。以全连接层为例,我们需要在全连接层的输出之后调用BN层。

python 复制代码
class MyModel(nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.fc1 = nn.Linear(10, 20)
        self.bn = nn.BatchNorm1d(20)
        self.fc2 = nn.Linear(20, 30)
        self.fc3 = nn.Linear(30, 2)

    def forward(self, x):
        x = self.fc1(x)
        x = self.bn(x)
        x = self.fc2(x)
        x = self.fc3(x)
        return x

二 添加残差连接

最主要的是需要注意输入参数的维度是否一致

python 复制代码
import torch
import torch.nn as nn

class ResidualBlock(nn.Module):
    def __init__(self, input_size, hidden_size):
        super(ResidualBlock, self).__init__()
        self.fc1 = nn.Linear(input_size, hidden_size)
        self.fc2 = nn.Linear(hidden_size, input_size)
        self.relu = nn.ReLU()
        
    def forward(self, x):
        residual = x
        out = self.fc1(x)
        out = self.relu(out)
        out = self.fc2(out)
        out += residual
        out = self.relu(out)
        return out
-----------------------------------
©著作权归作者所有:来自51CTO博客作者mob649e8166c3a5的原创作品,请联系作者获取转载授权,否则将追究法律责任
pytorch 全链接层设置残差模块
https://blog.51cto.com/u_16175510/6892589

1、Pytorch搭建残差网络

2、

相关推荐
Yvonne爱编码1 分钟前
JAVA数据结构 DAY1-集合和时空复杂度
java·数据结构·python
DN20208 分钟前
AI销售机器人:节日祝福转化率提升30倍
人工智能·python·深度学习·机器学习·机器人·节日
爱喝可乐的老王25 分钟前
PyTorch简介与安装
人工智能·pytorch·python
看我干嘛!29 分钟前
第三次python作业
服务器·数据库·python
deephub30 分钟前
用 PyTorch 实现 LLM-JEPA:不预测 token,预测嵌入
人工智能·pytorch·python·深度学习·大语言模型
量子-Alex34 分钟前
【多模态大模型】Qwen2-VL项目代码初步解析
人工智能
飞鹰5142 分钟前
深度学习算子CUDA优化实战:从GEMM到Transformer—Week4学习总结
c++·人工智能·深度学习·学习·transformer
工程师老罗44 分钟前
Pytorch如何验证模型?
人工智能·pytorch·深度学习
Hi_kenyon1 小时前
Skills精选
人工智能
我的xiaodoujiao1 小时前
使用 Python 语言 从 0 到 1 搭建完整 Web UI自动化测试学习系列 44--将自动化测试结果自动推送至钉钉工作群聊
前端·python·测试工具·ui·pytest