Pytorch 缓解过拟合和网络退化

一 添加BN模块

BN模块应该添加 激活层前面

在模型实例化后,我们需要对BN层进行初始化。PyTorch中的BN层是通过nn.BatchNorm1d或nn.BatchNorm2d类来实现的。

bn = nn.BatchNorm1d(20) #

对于1D输入数据,使用nn.BatchNorm1d;对于2D输入数据,使用nn.BatchNorm2d

在模型的前向传播过程中,我们需要将BN层应用到适当的位置。以全连接层为例,我们需要在全连接层的输出之后调用BN层。

python 复制代码
class MyModel(nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.fc1 = nn.Linear(10, 20)
        self.bn = nn.BatchNorm1d(20)
        self.fc2 = nn.Linear(20, 30)
        self.fc3 = nn.Linear(30, 2)

    def forward(self, x):
        x = self.fc1(x)
        x = self.bn(x)
        x = self.fc2(x)
        x = self.fc3(x)
        return x

二 添加残差连接

最主要的是需要注意输入参数的维度是否一致

python 复制代码
import torch
import torch.nn as nn

class ResidualBlock(nn.Module):
    def __init__(self, input_size, hidden_size):
        super(ResidualBlock, self).__init__()
        self.fc1 = nn.Linear(input_size, hidden_size)
        self.fc2 = nn.Linear(hidden_size, input_size)
        self.relu = nn.ReLU()
        
    def forward(self, x):
        residual = x
        out = self.fc1(x)
        out = self.relu(out)
        out = self.fc2(out)
        out += residual
        out = self.relu(out)
        return out
-----------------------------------
©著作权归作者所有:来自51CTO博客作者mob649e8166c3a5的原创作品,请联系作者获取转载授权,否则将追究法律责任
pytorch 全链接层设置残差模块
https://blog.51cto.com/u_16175510/6892589

1、Pytorch搭建残差网络

2、

相关推荐
远洋录20 分钟前
构建一个数据分析Agent:提升分析效率的实践
人工智能·ai·ai agent
IT古董1 小时前
【深度学习】常见模型-Transformer模型
人工智能·深度学习·transformer
沐雪架构师2 小时前
AI大模型开发原理篇-2:语言模型雏形之词袋模型
人工智能·语言模型·自然语言处理
python算法(魔法师版)3 小时前
深度学习深度解析:从基础到前沿
人工智能·深度学习
小王子10243 小时前
设计模式Python版 组合模式
python·设计模式·组合模式
kakaZhui3 小时前
【llm对话系统】大模型源码分析之 LLaMA 位置编码 RoPE
人工智能·深度学习·chatgpt·aigc·llama
struggle20254 小时前
一个开源 GenBI AI 本地代理(确保本地数据安全),使数据驱动型团队能够与其数据进行互动,生成文本到 SQL、图表、电子表格、报告和 BI
人工智能·深度学习·目标检测·语言模型·自然语言处理·数据挖掘·集成学习
佛州小李哥4 小时前
通过亚马逊云科技Bedrock打造自定义AI智能体Agent(上)
人工智能·科技·ai·语言模型·云计算·aws·亚马逊云科技
Mason Lin5 小时前
2025年1月22日(网络编程 udp)
网络·python·udp
清弦墨客5 小时前
【蓝桥杯】43697.机器人塔
python·蓝桥杯·程序算法