Pytorch 缓解过拟合和网络退化

一 添加BN模块

BN模块应该添加 激活层前面

在模型实例化后,我们需要对BN层进行初始化。PyTorch中的BN层是通过nn.BatchNorm1d或nn.BatchNorm2d类来实现的。

bn = nn.BatchNorm1d(20) #

对于1D输入数据,使用nn.BatchNorm1d;对于2D输入数据,使用nn.BatchNorm2d

在模型的前向传播过程中,我们需要将BN层应用到适当的位置。以全连接层为例,我们需要在全连接层的输出之后调用BN层。

python 复制代码
class MyModel(nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.fc1 = nn.Linear(10, 20)
        self.bn = nn.BatchNorm1d(20)
        self.fc2 = nn.Linear(20, 30)
        self.fc3 = nn.Linear(30, 2)

    def forward(self, x):
        x = self.fc1(x)
        x = self.bn(x)
        x = self.fc2(x)
        x = self.fc3(x)
        return x

二 添加残差连接

最主要的是需要注意输入参数的维度是否一致

python 复制代码
import torch
import torch.nn as nn

class ResidualBlock(nn.Module):
    def __init__(self, input_size, hidden_size):
        super(ResidualBlock, self).__init__()
        self.fc1 = nn.Linear(input_size, hidden_size)
        self.fc2 = nn.Linear(hidden_size, input_size)
        self.relu = nn.ReLU()
        
    def forward(self, x):
        residual = x
        out = self.fc1(x)
        out = self.relu(out)
        out = self.fc2(out)
        out += residual
        out = self.relu(out)
        return out
-----------------------------------
©著作权归作者所有:来自51CTO博客作者mob649e8166c3a5的原创作品,请联系作者获取转载授权,否则将追究法律责任
pytorch 全链接层设置残差模块
https://blog.51cto.com/u_16175510/6892589

1、Pytorch搭建残差网络

2、

相关推荐
滴答滴答嗒嗒滴39 分钟前
CI/CD 全流程全解
chrome·git·python·ci/cd·gitlab
微臣愚钝41 分钟前
深度学习-简介
人工智能
tonngw44 分钟前
TensorFlow 基本原理与使用场景
人工智能·python·tensorflow
Matrix_111 小时前
论文阅读:Deep Hybrid Camera Deblurring for Smartphone Cameras
人工智能·计算摄影
jndingxin1 小时前
OpenCV计算摄影学(21)非真实感渲染之边缘保留滤波器edgePreservingFilter()
人工智能·opencv·计算机视觉
美狐美颜sdk1 小时前
跨平台直播美颜SDK开发指南:如何兼容iOS、Android与Web
人工智能·深度学习·美颜sdk·视频美颜sdk·美颜api
Sheakan1 小时前
【NeurIPS 2024】LLM-ESR:用大语言模型破解序列推荐的长尾难题
人工智能·语言模型·自然语言处理
Francek Chen2 小时前
【通义千问】蓝耘智算 | 智启未来:蓝耘MaaS×通义QwQ-32B引领AI开发生产力
人工智能·开源·aigc·通义千问
wjpwjpwjp08312 小时前
【3D视觉学习笔记2】摄像机的标定、畸变的建模、2D/3D变换
人工智能·笔记·深度学习·学习·计算机视觉·3d