Python数据分析-A股市场成交量计算

兰叶春葳蕤,桂华秋皎洁。

1 前言

在前文中,作者已经分析了股票、基金的相关分析和计算,在本文中将继续分享A股市场成交量的计算,数据导出以及数据展示,主要是为了分享 pandas 数据处理的方法和思路,在本文中将涉及到 pandas 的数据合并以及 pandas 的数据导出。

2 数据准备

在之前的文章matplotlib 绘制上证指数图形 中,已经介绍了获取上证指数数据的方法,在本文中将使用同样的方法获取k线数据(数据来源为 eastmoney)。目前A股市场的总成交额包括上证指数和深证指数,因此需要综合计算两大指数的数据,即可获取最终的结果。上证指数代码 000001 和深证指数代码 399106。获取指数数据的代码如下所示: 通过方法会得到截止到当天的交易数据,可以通过 print 函数来输出指数的交易历史数据,包括交易日期,指数点位,成交金额,成交量以及换手率等信息。

3 数据计算

在准备好交易历史数据后,就可以进行数据的合并计算。A 股市场的成交金额是两大市场的总和,在 pandas 中,我们需要先将数据进行提取并进行重命名,我们需要计算两个指数的交易总额,首先需要使用 pandas merge 方法进行数据合并,数据合并使用日期进行关联,这个类似于 sql 语法的关联查询。同时需要将交易金额进行格式化处理,毕竟都是跟着好几位零的数据。

pandas 中,进行数据的计算十分简单,类似于四则运算即可生成一个新的数据列,两市的换手率计算比较复杂,需要根据成交总额除以两市总市值即可。接下来需要对日期进行格式化处理,提取出日期和年份数据,以方便图形化展示。

由于历史数据是从20年开始抓取的,在图形展示时会形成较多的数据线,这里只需要展示22年以来的数据即可,在进行数据截取时,需要将 pandas 的 index 进行重置,否则截取的数据还是保留原来的索引,在后续计算中会导致计算错误。即使采用了近两年的数据,也会导致数据图形的 x 坐标密集化展示,因此需要使用 xticks 对坐标进行处理,该项处理在图形化展示中至关重要。

4 数据导出

在上节中已经进行了数据的图形化处理,在本节中将把之前的数据进行导出,以便进行查看和接下来的处理。这里的数据导出采用两种方式,一种是简单的,一种是可以定制化的,以便设置单元格样式。

导出的结果如下所示:

3 总结

综上,本文使用了 pandas 进行数据计算和导出,主要介绍了数据计算的思路和方式,以及数据分析的一些技巧。相关代码已经上传至 github, 欢迎大家 star, 项目地址 fund_python

相关推荐
大力财经6 分钟前
百度开启AI新纪元,让智能从成本变成超级生产力
人工智能·百度
A尘埃26 分钟前
大模型应用python+Java后端+Vue前端的整合
java·前端·python
雍凉明月夜30 分钟前
Ⅰ人工智能学习的核心概念概述+线性回归(1)
人工智能·学习
Dyanic31 分钟前
融合尺度感知注意力、多模态提示学习与融合适配器的RGBT跟踪
人工智能·深度学习·transformer
A尘埃31 分钟前
LLM大模型评估攻略
开发语言·python
这张生成的图像能检测吗34 分钟前
(论文速读)AIMV2:一种基于多模态自回归预训练的大规模视觉编码器方法
人工智能·计算机视觉·预训练·视觉语言模型
这儿有一堆花42 分钟前
使用 Whisper 转写语音的完整教学
人工智能·ai·whisper
JD技术委员会1 小时前
如何在风险未提前识别导致损失后改进风险机制
人工智能
xuehaikj1 小时前
基于Mask R-CNN的汽车防夹手检测与识别系统
人工智能·汽车
一晌小贪欢1 小时前
【Python办公】处理 CSV和Excel 文件操作指南
开发语言·python·excel·excel操作·python办公·csv操作