【机器学习】四、计算学习理论

1 基础知识

计算学习理论(computational learning theory):关于通过"计算"来进行"学习"的理论,即关于机器学习的理论基础,其目的是分析学习任务的困难本质,为学习算法体统理论保证,并根据结果指导算法设计。

对于二分类问题,给定样本集

假设所有样本服从一个隐含未知的分布D DD,所有样本均独立同分布(independent and identically distributed)。

令h为样本到{ − 1 , + 1 } 上的一个映射,其泛化误差为

h在D 的经验误差为

由于D是D的独立同分布采样,因此h hh的经验误差的期望等于其泛化误差。 在上下文明确时,我们将E ( h ; D ) 和E ^ ( h ; D ) 分别简记为E ( h )和E ^ ( h ) 。 令ϵ为E ( h ) 的上限,即E ( h ) ≤ ϵ E(h);我们通常用ϵ表示预先设定的学得模型所应满足的误差要求,亦称"误差参数"。

我们将研究经验误差和泛化误差之间的逼近程度;若h在数据集上的经验误差为0,则称h与D一致,否则称其不一致。对于任意两个映射h 1 , h 2 ∈ X → Y h_1,h_2,用不合(disagreement)来度量他们之间的差别:

d ( h 1 , h 2 ) = P x ∼ D ( h 1 ( x ) ≠ h 2 ( x ) )

我们将会用到几个常见的不等式:

Jensen不等式:对任意凸函数,有

Hoeffding不等式:若x 1 , x 2 , ... , x m

为m 个独立随机变量,且满足0 ≤ x i ≤ 1,对任意ϵ > 0,有

McDiarmid不等式:

2 PAC学习

概率近似正确理论(Probably Approximately Correct,PAC):

首先介绍两个概念:

C:概念类。表示从样本空间到标记空间的映射,对任意样例,都能使得c ( x ) = y 。

H :假设类。学习算法会把认为可能的目标概念集中起来构成H。

若c ∈ H ,则说明假设能将所有示例按真实标记一致的方式完全分开,称为该问题对学习算法而言是"可分的";否则,称为"不可分的"

对于训练集,我们希望学习算法学习到的模型所对应的假设h hh尽可能接近目标概念c。我们是希望以比较大的把握学得比较好的模型,也就是说,以较大的概率学得误差满足预设上限的模型,这就是"概率近似正确"的含义。形式化地说,令δ 表示置信度,可定义:

PAC辨识:对0 ≤ ϵ , δ < 1 ,所有的c ∈ C 和分布D ,若存在学习算法,其输出假设h ∈ H 满足:

3 有限假设空间

3.1 可分情形

3.2 不可分情形

4 VC维

5 Rademacher复杂度

6 稳定性

相关推荐
视觉语言导航11 分钟前
CoRL-2025 | 物体相对控制赋能具身导航!ObjectReact:学习用于视觉导航的物体相对控制
人工智能·具身智能
半夏知半秋19 分钟前
skynet.newservice接口分析
笔记·后端·学习·安全架构
Chat_zhanggong34520 分钟前
HI3516CV610-20S开发板
人工智能·嵌入式硬件·编辑器
莫***先25 分钟前
鼎锋优配股票杠杆AI应用软件股走强,Figma涨幅超14%,Confluent涨超10%
人工智能·figma
数在表哥34 分钟前
从数据沼泽到智能决策:数据驱动与AI融合的中台建设方法论与技术实践指南(四)
大数据·人工智能
我的xiaodoujiao42 分钟前
从 0 到 1 搭建 Python 语言 Web UI自动化测试学习系列 15--二次开发--封装公共方法 3
python·学习·测试工具
爱思德学术43 分钟前
中国计算机学会(CCF)推荐学术会议-C(数据库/数据挖掘/内容检索):PAKDD 2026
大数据·机器学习·数据挖掘·知识发现
立志成为大牛的小牛1 小时前
数据结构——十四、构造二叉树(王道408)
数据结构·笔记·学习·程序人生·考研
Web3&Basketball1 小时前
Dify实战:调试技巧深度解析
人工智能
沃恩智慧1 小时前
超越CNN和Transformer!Mamba结合多模态统领图像任务!
人工智能·cnn·transformer