图像二值化阈值调整——cv2.threshold方法

二值化阈值调整:调整是指在进行图像二值化处理时,调整阈值的过程。阈值决定了将图像中的像素分为黑色和白色的界限,大于阈值的像素被设置为白色,小于等于阈值的像素被设置为黑色。

首先画出灰度直方图:横坐标是灰度值0---255,纵坐标是该灰度值的像素个数。

python 复制代码
import cv2
from matplotlib import pyplot as plt

img = cv2.imread ('6.jpg', 0)  # 读取图像并转换为灰度图像
hist = cv2.calcHist([img],[0],None,[256],[0,256])  # 计算灰度直方图
plt.hist(img.ravel( ),256,[0,256])  # 绘制直方图
plt.show()

方法一:

取阈值为 127,相当于 0~255 的中位数(0+255)/2 = 127,灰度值大于等于 127 的设置为 0,灰度值大于 127 的设置为 255,这种方法简单便捷,缺点就是阈值设置的太死板了,对于不同的照片,效果肯定不同。检索资料的时候发现,还有人把这种方法称为 史上最弱智的二值处理方法,没办法,弱智方法也得学啊。

该方法会使用到一个 threshold 方法,threshold 方法的语法格式如下:

python 复制代码
cv2.threshold(src, thresh, maxval, type[, dst]) -> retval, dst

参数说明如下:

  • src 输入图,中只能输入单通道图,一般就是灰度图;
  • thresh 阈值;
  • maxval 最大值,当像素超过了阈值(或者小于阈值)时所赋予的值;
  • type - 二值化操作的类型,有 5 种,在下文描述;
  • dst 输出数组/图像(与 src 相同大小和类型以及相同通道数的数组/图像)。

返回值 retval 阈值 thresh, dst 经过处理的图像。

二值化操作类型type参数(阈值类型):

  • 二进制阈值化 THRESH_BINARY,过门限的值为最大值,其他值为 0;
  • 反二进制阈值化 THRESH_BINARY_INV,过门限的值为 0,其他值为最大值;
  • 截断阈值化 THRESH_TRUNC,过门限的值为门限值,其他值不变;
  • 阈值化为 0 THRESH_TOZERO,过门限的值不变,其他设置为 0;
  • 反阈值化为 0 THRESH_TOZERO_INV,过门限的值为 0,其他不变。

以上内容也叫做全局阈值。参考代码:

python 复制代码
import cv2
import matplotlib.pylab as plt

def main2():
    img = cv2.imread('6.jpg', 0)
    ret, thresh1 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
    ret, thresh2 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY_INV)
    ret, thresh3 = cv2.threshold(img, 127, 255, cv2.THRESH_TRUNC)
    ret, thresh4 = cv2.threshold(img, 127, 255, cv2.THRESH_TOZERO)
    ret, thresh5 = cv2.threshold(img, 127, 255, cv2.THRESH_TOZERO_INV)

    titles = ['Original Image', 'BINARY',
              'BINARY_INV', 'TRUNC', 'TOZERO', 'TOZERO_INV']
    images = [img, thresh1, thresh2, thresh3, thresh4, thresh5]

    for i in range(6):
        plt.subplot(2, 3, i+1)
        plt.imshow(images[i], 'gray')
        plt.title(titles[i])
        plt.xticks([])
        plt.yticks([])

    plt.show()

main2()

当然,也可以把代码里面的127改成别的,这就叫手动选择阈值。

方法二:

计算像素点矩阵中的所有像素点的灰度值的平均值 avg,让每一个像素点与 avg 比较,小于等于 avg 的像素点就为 0(黑色),大于 avg 的像素点为 255(白色),这种方法看起来靠谱了一些。

使用该方法之前需要先遍历图像的所有灰度值,才能计算出平均值。下图所示的阈值计算结果是151.参考代码如下:

python 复制代码
import cv2

def main():
    img = cv2.imread("1.TIF", 0)
    
    height, width = img.shape
    # 灰度值总和
    px_t = 0
    for i in range(height):
        for j in range(width):
            px_t += img[i][j]
    print(px_t)
    # 求像素平均值
    avg_thresh = int(px_t / (height * width))
    print(avg_thresh)
   
    thresh, dst = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
    cv2.imshow("dst", dst)
    cv2.waitKey()
    cv2.imwrite("2.jpg",dst)

if __name__ == "__main__":
    main()
相关推荐
全栈技术负责人1 分钟前
AI驱动开发 (AI-DLC) 实战经验分享:重构人机协作的上下文工程
人工智能·重构
Wu_Dylan1 分钟前
智能体系列(二):规划(Planning):从 CoT、ToT 到动态采样与搜索
人工智能·算法
一招定胜负2 分钟前
OpenCV轮廓检测完全指南:从原理到实战
人工智能·opencv·计算机视觉
知乎的哥廷根数学学派8 分钟前
基于多尺度注意力机制融合连续小波变换与原型网络的滚动轴承小样本故障诊断方法(Pytorch)
网络·人工智能·pytorch·python·深度学习·算法·机器学习
xiatianxy11 分钟前
云酷科技用智能化方案破解行业难题
人工智能·科技·安全·智能安全带
星云数灵13 分钟前
大模型高级工程师考试练习题8
人工智能·机器学习·大模型·大模型考试题库·阿里云aca·阿里云acp大模型考试题库·大模型高级工程师acp
A先生的AI之旅13 分钟前
2025顶会TimeDRT快速解读
人工智能·pytorch·python·深度学习·机器学习
2301_8002561114 分钟前
【人工智能引论期末复习】第3章 搜索求解2 - 对抗搜索
人工智能·算法·深度优先
温柔只给梦中人14 分钟前
深度学习:正则化
人工智能·深度学习
狮子座明仔16 分钟前
DocDancer:北大联合腾讯提出端到端训练的文档问答Agent,将DocQA形式化为信息寻求过程
人工智能·深度学习·语言模型·自然语言处理