机器学习中的 K-均值聚类算法及其优缺点

K-均值聚类算法概念

K-均值聚类是一种无监督学习算法,目的是将给定的数据集划分成 K 个不同的类别。K-均值算法的基本思路是:先在数据集中随机选取 K 个点作为初始的聚类中心,然后计算每个数据点与这 K 个聚类中心的距离,将每个数据点归于距离最近的聚类中心所代表的聚类,接着更新聚类中心,重新计算每个数据点与新的聚类中心的距离,不断迭代,直到算法收敛。

K-均值聚类算法的优点

1. 算法实现简单,易于理解和实现。

2. 在处理大数据集时具有良好的可扩展性。

3. 适用于大部分数据集。

K-均值聚类算法的缺点

1. 由于 K 值的设定不够科学,可能会导致聚类的结果不理想。

2. 对于异常值和噪声数据比较敏感。

3. K-均值聚类对数据集的初始值比较敏感,不同的初始值可能会得到不同的聚类结果。

4. K-均值聚类算法只能处理数值型数据,不能处理非数值型数据。

总结

总之,K-均值聚类算法是一种简单而有效的无监督学习算法,但在实际应用中需要根据具体情况对其优缺点进行评估。

相关推荐
人工智能训练4 小时前
【极速部署】Ubuntu24.04+CUDA13.0 玩转 VLLM 0.15.0:预编译 Wheel 包 GPU 版安装全攻略
运维·前端·人工智能·python·ai编程·cuda·vllm
源于花海5 小时前
迁移学习相关的期刊和会议
人工智能·机器学习·迁移学习·期刊会议
DisonTangor6 小时前
DeepSeek-OCR 2: 视觉因果流
人工智能·开源·aigc·ocr·deepseek
薛定谔的猫19826 小时前
二十一、基于 Hugging Face Transformers 实现中文情感分析情感分析
人工智能·自然语言处理·大模型 训练 调优
发哥来了6 小时前
《AI视频生成技术原理剖析及金管道·图生视频的应用实践》
人工智能
数智联AI团队7 小时前
AI搜索引领开源大模型新浪潮,技术创新重塑信息检索未来格局
人工智能·开源
不懒不懒7 小时前
【线性 VS 逻辑回归:一篇讲透两种核心回归模型】
人工智能·机器学习
冰西瓜6007 小时前
从项目入手机器学习——(四)特征工程(简单特征探索)
人工智能·机器学习
Ryan老房7 小时前
未来已来-AI标注工具的下一个10年
人工智能·yolo·目标检测·ai
丝斯20118 小时前
AI学习笔记整理(66)——多模态大模型MOE-LLAVA
人工智能·笔记·学习