机器学习中的 K-均值聚类算法及其优缺点

K-均值聚类算法概念

K-均值聚类是一种无监督学习算法,目的是将给定的数据集划分成 K 个不同的类别。K-均值算法的基本思路是:先在数据集中随机选取 K 个点作为初始的聚类中心,然后计算每个数据点与这 K 个聚类中心的距离,将每个数据点归于距离最近的聚类中心所代表的聚类,接着更新聚类中心,重新计算每个数据点与新的聚类中心的距离,不断迭代,直到算法收敛。

K-均值聚类算法的优点

1. 算法实现简单,易于理解和实现。

2. 在处理大数据集时具有良好的可扩展性。

3. 适用于大部分数据集。

K-均值聚类算法的缺点

1. 由于 K 值的设定不够科学,可能会导致聚类的结果不理想。

2. 对于异常值和噪声数据比较敏感。

3. K-均值聚类对数据集的初始值比较敏感,不同的初始值可能会得到不同的聚类结果。

4. K-均值聚类算法只能处理数值型数据,不能处理非数值型数据。

总结

总之,K-均值聚类算法是一种简单而有效的无监督学习算法,但在实际应用中需要根据具体情况对其优缺点进行评估。

相关推荐
Shawn_Shawn1 小时前
mcp学习笔记(一)-mcp核心概念梳理
人工智能·llm·mcp
33三 三like3 小时前
《基于知识图谱和智能推荐的养老志愿服务系统》开发日志
人工智能·知识图谱
芝士爱知识a3 小时前
【工具推荐】2026公考App横向评测:粉笔、华图与智蛙面试App功能对比
人工智能·软件推荐·ai教育·结构化面试·公考app·智蛙面试app·公考上岸
腾讯云开发者5 小时前
港科大熊辉|AI时代的职场新坐标——为什么你应该去“数据稀疏“的地方?
人工智能
工程师老罗5 小时前
YoloV1数据集格式转换,VOC XML→YOLOv1张量
xml·人工智能·yolo
Coder_Boy_5 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
啊森要自信5 小时前
CANN ops-cv:面向计算机视觉的 AI 硬件端高效算子库核心架构与开发逻辑
人工智能·计算机视觉·架构·cann
2401_836235865 小时前
中安未来SDK15:以AI之眼,解锁企业档案的数字化基因
人工智能·科技·深度学习·ocr·生活
njsgcs5 小时前
llm使用 AgentScope-Tuner 通过 RL 训练 FrozenLake 智能体
人工智能·深度学习