机器学习中的 K-均值聚类算法及其优缺点

K-均值聚类算法概念

K-均值聚类是一种无监督学习算法,目的是将给定的数据集划分成 K 个不同的类别。K-均值算法的基本思路是:先在数据集中随机选取 K 个点作为初始的聚类中心,然后计算每个数据点与这 K 个聚类中心的距离,将每个数据点归于距离最近的聚类中心所代表的聚类,接着更新聚类中心,重新计算每个数据点与新的聚类中心的距离,不断迭代,直到算法收敛。

K-均值聚类算法的优点

1. 算法实现简单,易于理解和实现。

2. 在处理大数据集时具有良好的可扩展性。

3. 适用于大部分数据集。

K-均值聚类算法的缺点

1. 由于 K 值的设定不够科学,可能会导致聚类的结果不理想。

2. 对于异常值和噪声数据比较敏感。

3. K-均值聚类对数据集的初始值比较敏感,不同的初始值可能会得到不同的聚类结果。

4. K-均值聚类算法只能处理数值型数据,不能处理非数值型数据。

总结

总之,K-均值聚类算法是一种简单而有效的无监督学习算法,但在实际应用中需要根据具体情况对其优缺点进行评估。

相关推荐
逛逛GitHub1 小时前
飞书多维表“独立”了!功能强大的超出想象。
人工智能·github·产品
机器之心1 小时前
刚刚,DeepSeek-R1论文登上Nature封面,通讯作者梁文锋
人工智能·openai
aneasystone本尊4 小时前
学习 Chat2Graph 的知识库服务
人工智能
IT_陈寒4 小时前
Redis 性能翻倍的 7 个冷门技巧,第 5 个大多数人都不知道!
前端·人工智能·后端
飞哥数智坊14 小时前
GPT-5-Codex 发布,Codex 正在取代 Claude
人工智能·ai编程
倔强青铜三14 小时前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试
虫无涯15 小时前
Dify Agent + AntV 实战:从 0 到 1 打造数据可视化解决方案
人工智能
Dm_dotnet17 小时前
公益站Agent Router注册送200刀额度竟然是真的
人工智能
算家计算18 小时前
7B参数拿下30个世界第一!Hunyuan-MT-7B本地部署教程:腾讯混元开源业界首个翻译集成模型
人工智能·开源
机器之心18 小时前
LLM开源2.0大洗牌:60个出局,39个上桌,AI Coding疯魔,TensorFlow已死
人工智能·openai