(论文阅读15/100)You Only Look Once: Unified, Real-Time Object Detection

|----|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 文献阅读笔记 |||
| 简介 | 题目 | You Only Look Once: Unified, Real-Time Object Detection |
| 简介 | 作者 | Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi |
| 简介 | 原文链接 | https://arxiv.org/pdf/1506.02640.pdf 《You Only Look Once: Unified, Real-Time Object Detection》-CSDN博客 |
| 简介 | 关键词 | Null |
| 简介 | 研究问题 | 目标检测框架问题。 |
| 简介 | 研究方法 | 将detection视为回归问题,仅使用一个neural network同时预测bounding box的位置和类别,因此速度很快。 由于不需提取region proposal,而是直接在整幅图像进行检测,因此YOLOv1可以联系上下文信息和特征,减少将背景检测为物体的错误。 YOLOv1学习到的是目标的泛化表示(generalizable representations),泛化能力非常强,更容易应用于新的领域或输入。 由于不需提取region proposal,则YOLOv1的检测流程很简单: Resize image:将输入图片resize到448x448。 Run ConvNet:使用CNN提取特征,FC层输出分类和回归结果。 Non-max Suppression:非极大值抑制筛选出最终的结果。 |
| 简介 | 研究结论 | 背景上预测假阳性的可能性比较低。 |
| 简介 | 创新不足 | 损失函数设计存在缺陷,会产生更多地定位错误。 对重叠、邻近的物体检测不友好。 测试数据中出现了训练数据中没有的长宽比时,泛化能力低。 |
| 简介 | 额外知识 | DPM(Deformable PartsModel)算法:基于部件的检测方法,对目标的形变具有很强的鲁棒性。 DPM(Deformable Parts Model)--原理(一)_deformable parts models.-CSDN博客 |

相关推荐
烟锁池塘柳03 分钟前
【计算机视觉】三种图像质量评价指标详解:PSNR、SSIM与SAM
人工智能·深度学习·计算机视觉
小森776729 分钟前
(六)机器学习---聚类与K-means
人工智能·机器学习·数据挖掘·scikit-learn·kmeans·聚类
RockLiu@8051 小时前
探索PyTorch中的空间与通道双重注意力机制:实现concise的scSE模块
人工智能·pytorch·python
进取星辰1 小时前
PyTorch 深度学习实战(23):多任务强化学习(Multi-Task RL)之扩展
人工智能·pytorch·深度学习
极客智谷1 小时前
Spring AI应用系列——基于ARK实现多模态模型应用
人工智能·后端
思悟小卒1 小时前
可以自我反思的检索增强生成
人工智能
学点技术儿2 小时前
torch.cuda.empty_cache()使用场景
人工智能
孔令飞2 小时前
如何在 Go 中实现各种类型的链表?
人工智能·云原生·go
XCristiano2 小时前
LLM魔法:让非结构化文本变身知识图谱
人工智能
redparrot20082 小时前
LeNet5 神经网络的参数解析和图片尺寸解析
人工智能·深度学习·神经网络