第九周实验记录

1、安装Nerfstudio

环境配置

首先需要创建环境python=3.8,接着需要安装cuda11.7或11.3 这里安装cuda11.7

bash 复制代码
pip uninstall torch torchvision functorch
 
pip install torch==1.13.1 torchvision functorch --extra-index-url https://download.pytorch.org/whl/cu117

安装tinycudann

直接使用 pip install 命令很可能出错

所以先git 下文件在安装

bash 复制代码
 git clone --recursive https://github.com/nvlabs/tiny-cuda-nn
 cd tiny-cuda-nn
 cmake . -B build
 cmake --build build --config RelWithDebInfo -j

在执行最后一步的时候可能会出现缺少文件的错误,需要升级cmake版本 参考链接

接着链接pytorch

bash 复制代码
 cd tiny-cuda-nn/bindings/torch
 python setup.py install #时间较长

测试 输入python

python 复制代码
python
import tinycudann

如图 ,安装成功

安装nerfstudio

这里可以直接安装

bash 复制代码
 pip install nerfstudio

也可以git安装

bash 复制代码
 git clone https://github.com/nerfstudio-project/nerfstudio.git
 cd nerfstudio
 pip install --upgrade pip setuptools
 pip install -e .

运行实例

首先需要下载数据集,因为网络原因可能会无法下载,我是直接复制下载链接在浏览器下载。

bash 复制代码
 ns-download-data nerfstudio --capture-name=poster

将数据集解压后,可以直接进行训练

bash 复制代码
 ns-train nerfacto --data data/nerfstudio/poster

在HTTP框中 给出了viewer的地方,在pc端上使用ssh链接服务器 使用cmd输入

bash 复制代码
ssh -L 7007:localhost:7007 [email protected] -p 22048

复制链接打开浏览器,可以查看渲染情况

右侧可以渲染图像,得到视频,以及导出点云,在导出点云文件时命令可以运行,得到点云文件

2、MARS实验

按照github的命令配置环境,这里nerfstudio又安装了一些依赖

下载kitti数据集,一开始没有深度图,所以根据给的代码生成了深度图

开始训练(10月份版本的命令)

bash 复制代码
ns-train  nsg-kitti-car-depth-recon --data /root/autodl-tmp/mars/data/kitti-MOT/training/image_02/0006

如果想读取已经训练的权重 :--load_dir /root/autodl-tmp/mars/outputs/0006/nsg-kitti-car-depth-recon/2023-11-04_090030/nerfstudio_models

一开始训练出现killed的情况

可能是内存不足,服务器换了160g内存进行重新训练,可以运行

可视化模型为wandb

查看训练曲线以及渲染图像情况

3090显卡,0006序列训练10万次大概9-10个小时

可视化同样可以使用nerfstudio提供的界面 --vis viewer(但是界面很奇怪)可能存在问题

并且根据提供的命令,渲染视频,也出现了错误,可能是nerfstudio安装出现问题,后续继续解决

下周计划

学习nerfstudio 查看论文、文档

解决本周出现的问题

详细阅读mars论文

相关推荐
asdfg125896323 分钟前
深度估计中为什么需要已知相机基线(known camera baseline)?
人工智能·计算机视觉
jndingxin1 小时前
OpenCV CUDA模块中逐元素操作------算术运算
人工智能·opencv·计算机视觉
白熊1881 小时前
【图像生成大模型】Step-Video-T2V:下一代文本到视频生成技术
人工智能·opencv·yolo·计算机视觉·大模型·音视频
21级的乐未央1 小时前
论文阅读(四):Agglomerative Transformer for Human-Object Interaction Detection
论文阅读·深度学习·计算机视觉·transformer
知舟不叙2 小时前
基于OpenCV的实时文档扫描与矫正技术
人工智能·opencv·计算机视觉·透视变换·实时文档扫描与矫正
Blossom.1182 小时前
基于区块链技术的供应链溯源系统:重塑信任与透明度
服务器·网络·人工智能·目标检测·机器学习·计算机视觉·区块链
AndrewHZ3 小时前
【图像处理基石】OpenCV中都有哪些图像增强的工具?
图像处理·opencv·算法·计算机视觉·滤波·图像增强·颜色科学
carpell6 小时前
【语义分割专栏】:FCN原理篇
人工智能·深度学习·计算机视觉·语义分割
Blossom.11820 小时前
从虚拟现实到混合现实:沉浸式体验的未来之路
人工智能·目标检测·机器学习·计算机视觉·语音识别·vr·mr
动感光博1 天前
Unity(URP渲染管线)的后处理、动画制作、虚拟相机(Virtual Camera)
开发语言·人工智能·计算机视觉·unity·c#·游戏引擎