第九周实验记录

1、安装Nerfstudio

环境配置

首先需要创建环境python=3.8,接着需要安装cuda11.7或11.3 这里安装cuda11.7

bash 复制代码
pip uninstall torch torchvision functorch
 
pip install torch==1.13.1 torchvision functorch --extra-index-url https://download.pytorch.org/whl/cu117

安装tinycudann

直接使用 pip install 命令很可能出错

所以先git 下文件在安装

bash 复制代码
 git clone --recursive https://github.com/nvlabs/tiny-cuda-nn
 cd tiny-cuda-nn
 cmake . -B build
 cmake --build build --config RelWithDebInfo -j

在执行最后一步的时候可能会出现缺少文件的错误,需要升级cmake版本 参考链接

接着链接pytorch

bash 复制代码
 cd tiny-cuda-nn/bindings/torch
 python setup.py install #时间较长

测试 输入python

python 复制代码
python
import tinycudann

如图 ,安装成功

安装nerfstudio

这里可以直接安装

bash 复制代码
 pip install nerfstudio

也可以git安装

bash 复制代码
 git clone https://github.com/nerfstudio-project/nerfstudio.git
 cd nerfstudio
 pip install --upgrade pip setuptools
 pip install -e .

运行实例

首先需要下载数据集,因为网络原因可能会无法下载,我是直接复制下载链接在浏览器下载。

bash 复制代码
 ns-download-data nerfstudio --capture-name=poster

将数据集解压后,可以直接进行训练

bash 复制代码
 ns-train nerfacto --data data/nerfstudio/poster

在HTTP框中 给出了viewer的地方,在pc端上使用ssh链接服务器 使用cmd输入

bash 复制代码
ssh -L 7007:localhost:7007 [email protected] -p 22048

复制链接打开浏览器,可以查看渲染情况

右侧可以渲染图像,得到视频,以及导出点云,在导出点云文件时命令可以运行,得到点云文件

2、MARS实验

按照github的命令配置环境,这里nerfstudio又安装了一些依赖

下载kitti数据集,一开始没有深度图,所以根据给的代码生成了深度图

开始训练(10月份版本的命令)

bash 复制代码
ns-train  nsg-kitti-car-depth-recon --data /root/autodl-tmp/mars/data/kitti-MOT/training/image_02/0006

如果想读取已经训练的权重 :--load_dir /root/autodl-tmp/mars/outputs/0006/nsg-kitti-car-depth-recon/2023-11-04_090030/nerfstudio_models

一开始训练出现killed的情况

可能是内存不足,服务器换了160g内存进行重新训练,可以运行

可视化模型为wandb

查看训练曲线以及渲染图像情况

3090显卡,0006序列训练10万次大概9-10个小时

可视化同样可以使用nerfstudio提供的界面 --vis viewer(但是界面很奇怪)可能存在问题

并且根据提供的命令,渲染视频,也出现了错误,可能是nerfstudio安装出现问题,后续继续解决

下周计划

学习nerfstudio 查看论文、文档

解决本周出现的问题

详细阅读mars论文

相关推荐
蚂蚁20143 小时前
卷积神经网络(二)
人工智能·计算机视觉
z_mazin5 小时前
反爬虫机制中的验证码识别:类型、技术难点与应对策略
人工智能·计算机视觉·目标跟踪
jndingxin8 小时前
OpenCV 图形API(60)颜色空间转换-----将图像从 YUV 色彩空间转换为 RGB 色彩空间函数YUV2RGB()
人工智能·opencv·计算机视觉
知舟不叙9 小时前
OpenCV中的SIFT特征提取
人工智能·opencv·计算机视觉
__lost12 小时前
Python图像变清晰与锐化,调整对比度,高斯滤波除躁,卷积锐化,中值滤波钝化,神经网络变清晰
python·opencv·计算机视觉
欣然~12 小时前
借助 OpenCV 和 PyTorch 库,利用卷积神经网络提取图像边缘特征
人工智能·计算机视觉
豆豆12 小时前
day32 学习笔记
图像处理·笔记·opencv·学习·计算机视觉
白熊18813 小时前
【计算机视觉】CV实战项目 - 基于YOLOv5的人脸检测与关键点定位系统深度解析
人工智能·yolo·计算机视觉
硅谷秋水14 小时前
通过模仿学习实现机器人灵巧操作:综述(上)
人工智能·深度学习·机器学习·计算机视觉·语言模型·机器人
何大春16 小时前
【视频时刻检索】Text-Video Retrieval via Multi-Modal Hypergraph Networks 论文阅读
论文阅读·深度学习·神经网络·计算机视觉·视觉检测·论文笔记