动手学深度学习——残差网络ResNet(原理解释+代码详解)

残差网络ResNet

      • [1. 函数类](#1. 函数类)
      • [2. 残差块](#2. 残差块)
      • [3. ResNet模型](#3. ResNet模型)
      • [4. 训练模型](#4. 训练模型)

ResNet为了解决"新添加的层如何提升神经网络的性能",它在2015年的ImageNet图像识别挑战赛夺魁

它深刻影响了后来的深度神经网络的设计,ResNet的被引用量更是达到了19万+。

1. 函数类

假设有一类特定的神经网络架构F,它包括学习速率和其他超参数设置。对于所有f∈F,存在一些参数集(例如权重和偏置),这些参数可以通过在合适的数据集上进行训练而获得。

现在假设 f* 是我们真正想要找到的函数,如果是 f*∈F,那可以轻而易举的训练得到它。

给定一个具有X特性和y标签的数据集

是我们要找的函数,为了使其更近似真正的 f* ,则需要更强的架构F'。

对于非嵌套函数类,较复杂的函数类并不总是向"真"函数 f* 靠拢(复杂度由F1向F6递增)。虽然F3比F1更接近 f*,但却离F6的更远了。

而右侧的嵌套函数可以避免上述问题。

2. 残差块

残差网络的核心思想是:每个附加层都应该更容易地包含原始函数作为其元素之一。

F(x) + x包含了原始元素。

ResNet沿用了VGG完整的3x3卷积层设计。

  • 残差块里首先有2个有相同输出通道数的3x3卷积层。
  • 每个卷积层后接一个批量规范化层和ReLU激活函数。
  • 然后通过跨层数据通路,跳过这2个卷积运算,将输入直接加在最后的ReLU激活函数前。
python 复制代码
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l


class Residual(nn.Module): #@save
    # use_ixiconv:残差连接是直接连接还是通过卷积层连接
    def __init__(self, input_channels, num_channels,
                 use_1x1conv=False, strides=1):
        super().__init__()
        self.conv1 = nn.Conv2d(input_channels, num_channels, 
                               kernel_size=3, padding=1, stride=strides)
        self.conv2 = nn.Conv2d(num_channels, num_channels, 
                               kernel_size=3, padding=1)
        if use_1x1conv:
            self.conv3 = nn.Conv2d(input_channels, num_channels, 
                               kernel_size=3, padding=1, stride=strides)
        else:
            self.conv3 = None
        self.bn1 = nn.BatchNorm2d(num_channels)
        self.bn2 = nn.BatchNorm2d(num_channels)
        
    def forward(self, X):
        Y = F.relu(self.bn1(self.conv1(X)))
        Y = self.bn2(self.conv2(Y))
        if self.conv3:
            X = self.conv3(X)
        Y += X 
        return F.relu(Y)

此代码生成两种类型的网络:

  • 一种是当use_1x1conv=False时,应用ReLU非线性函数之前,将输入添加到输出。
  • 另一种是当use_1x1conv=True时,添加通过1x1卷积调整通道和分辨率。
    查看输入和输出形状一致的情况
python 复制代码
# 输入、输出的情况
blk = Residual(3, 3)
X = torch.rand(4, 3, 6, 6)
Y = blk(X)
Y.shape

在增加输出通道数的同时,减半输出的高和宽

python 复制代码
# 增加输出通道的同时,减半输出的高度和宽度
blk = Residual(3, 6, use_1x1conv=True, strides=2)
blk(X).shape

3. ResNet模型

ResNet的前两层跟之前介绍的GoogLeNet中的一样: 在输出通道数为64、步幅为2的7x7卷积层后,接步幅为2的3x3的最大汇聚层。 不同之处在于ResNet每个卷积层后增加了批量规范化层。

python 复制代码
# ResNet在每个卷积层后增加了批量规范层
b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
                   nn.BatchNorm2d(64), nn.ReLU(),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

ResNet使用4个由残差块组成的模块,每个模块使用若干个同样输出通道数的残差块。

第一个模块的通道数同输入通道数一致。之后的每个模块在第一个残差块里将上一个模块的通道数翻倍,并将高和宽减半。

python 复制代码
# 实现残差连接模块:由4个残差连接块组成
def resnet_block(input_channels, num_channels, num_residuals, 
                first_block=False):
    # 定义空网络结构
    blk = []
    for i in range(num_residuals):
        # 第2,3,4个Inception块的第一个残差模块连接1x1卷积层
        if i == 0 and not first_block:
            blk.append(Residual(input_channels, num_channels, 
                               use_1x1conv=True, strides=2))
        else:
            blk.append(Residual(num_channels, num_channels))
    return blk

接着在ResNet加入所有残差块,这里每个模块使用2个残差块。

python 复制代码
# 在ResNet加入所有残差块,每个模版使用2个残差块
b2 = nn.Sequential(*resnet_block(64, 64, 2, first_block=True))
b3 = nn.Sequential(*resnet_block(64, 128, 2))
b4 = nn.Sequential(*resnet_block(128, 256, 2))
b5 = nn.Sequential(*resnet_block(256, 512, 2))

最后在ResNet中加入全局平均汇聚层,以及全连接层输出。

python 复制代码
# 在ResNet加入全局平均汇聚层以及全连接层输出
net = nn.Sequential(b1, b2, b3, b4, b5,
                   nn.AdaptiveAvgPool2d((1, 1)),
                   nn.Flatten(), nn.Linear(512, 10))

每个模块有4个卷积层,加上第一个7x7卷积层和最后一个全连接层,共有18层,这种模型通常被称为ResNet-18。

观察一下ResNet中不同模块的输入形状是如何变化

python 复制代码
# 每个模块有4个卷积层(不包括恒等映射的1x1卷积层)。 
# 加上第一个7x7卷积层和最后一个全连接层,共有18层。 
# 因此,这种模型通常被称为ResNet-18。
X = torch.rand(size=(1, 1, 224, 224))
for layer in net:
    X = layer(X)
    print(layer.__class__.__name__, 'output_shape:\t', X.shape)

4. 训练模型

在Fashion-MNIST数据集上训练ResNet

定义精度评估函数

python 复制代码
"""
    定义精度评估函数:
    1、将数据集复制到显存中
    2、通过调用accuracy计算数据集的精度
"""
def evaluate_accuracy_gpu(net, data_iter, device=None): #@save
    # 判断net是否属于torch.nn.Module类
    if isinstance(net, nn.Module):
        net.eval()
        
        # 如果不在参数选定的设备,将其传输到设备中
        if not device:
            device = next(iter(net.parameters())).device
    
    # Accumulator是累加器,定义两个变量:正确预测的数量,总预测的数量。
    metric = d2l.Accumulator(2)
    with torch.no_grad():
        for X, y in data_iter:
            # 将X, y复制到设备中
            if isinstance(X, list):
                # BERT微调所需的(之后将介绍)
                X = [x.to(device) for x in X]
            else:
                X = X.to(device)
            y = y.to(device)
            
            # 计算正确预测的数量,总预测的数量,并存储到metric中
            metric.add(d2l.accuracy(net(X), y), y.numel())
    return metric[0] / metric[1]

定义GPU训练函数

python 复制代码
"""
    定义GPU训练函数:
    1、为了使用gpu,首先需要将每一小批量数据移动到指定的设备(例如GPU)上;
    2、使用Xavier随机初始化模型参数;
    3、使用交叉熵损失函数和小批量随机梯度下降。
"""
#@save
def train_ch6(net, train_iter, test_iter, num_epochs, lr, device):
    """用GPU训练模型(在第六章定义)"""
    # 定义初始化参数,对线性层和卷积层生效
    def init_weights(m):
        if type(m) == nn.Linear or type(m) == nn.Conv2d:
            nn.init.xavier_uniform_(m.weight)
    net.apply(init_weights)
    
    # 在设备device上进行训练
    print('training on', device)
    net.to(device)
    
    # 优化器:随机梯度下降
    optimizer = torch.optim.SGD(net.parameters(), lr=lr)
    
    # 损失函数:交叉熵损失函数
    loss = nn.CrossEntropyLoss()
    
    # Animator为绘图函数
    animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
                            legend=['train loss', 'train acc', 'test acc'])
    
    # 调用Timer函数统计时间
    timer, num_batches = d2l.Timer(), len(train_iter)
    
    for epoch in range(num_epochs):
        
        # Accumulator(3)定义3个变量:损失值,正确预测的数量,总预测的数量
        metric = d2l.Accumulator(3)
        net.train()
        
        # enumerate() 函数用于将一个可遍历的数据对象
        for i, (X, y) in enumerate(train_iter):
            timer.start() # 进行计时
            optimizer.zero_grad() # 梯度清零
            X, y = X.to(device), y.to(device) # 将特征和标签转移到device
            y_hat = net(X)
            l = loss(y_hat, y) # 交叉熵损失
            l.backward() # 进行梯度传递返回
            optimizer.step()
            with torch.no_grad():
                # 统计损失、预测正确数和样本数
                metric.add(l * X.shape[0], d2l.accuracy(y_hat, y), X.shape[0])
            timer.stop() # 计时结束
            train_l = metric[0] / metric[2] # 计算损失
            train_acc = metric[1] / metric[2] # 计算精度
            
            # 进行绘图
            if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
                animator.add(epoch + (i + 1) / num_batches,
                             (train_l, train_acc, None))
                
        # 测试精度
        test_acc = evaluate_accuracy_gpu(net, test_iter) 
        animator.add(epoch + 1, (None, None, test_acc))
        
    # 输出损失值、训练精度、测试精度
    print(f'loss {train_l:.3f}, train acc {train_acc:.3f},'
          f'test acc {test_acc:.3f}')
    
    # 设备的计算能力
    print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec'
          f'on {str(device)}')

训练模型

python 复制代码
# 训练模型
lr, num_epochs, batch_size = 0.05, 10 ,256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
相关推荐
卓_尔_不_凡14 分钟前
Pytorch学习---基于经典网络架构ResNet训练花卉图像分类模型
人工智能·分类·数据挖掘
神奇夜光杯23 分钟前
Python酷库之旅-第三方库Pandas(123)
开发语言·人工智能·python·excel·pandas·标准库及第三方库·学习与成长
SEU-WYL26 分钟前
基于神经网络的光线追踪
人工智能·神经网络·计算机视觉
Bill6628 分钟前
OpenCV GUI常用函数详解
人工智能·opencv·计算机视觉
DisonTangor28 分钟前
OpenAI面向开发者继续提高o1系列模型的调用速率 最高每分钟可调用1000次
人工智能
zhangbin_23729 分钟前
【Python机器学习】NLP信息提取——提取人物/事物关系
开发语言·人工智能·python·机器学习·自然语言处理
王豫翔30 分钟前
OpenAl o1论文:Let’s Verify Step by Step 快速解读
人工智能·深度学习·机器学习·chatgpt
xuehaikj35 分钟前
婴儿接触危险物品检测系统源码分享
人工智能·计算机视觉·目标跟踪
明天…ling1 小时前
Web前端开发
前端·css·网络·前端框架·html·web
crownyouyou1 小时前
第一次安装Pytorch
人工智能·pytorch·python