Sqoop的安装和使用

目录

一.安装

二.导入

1.全量导入

一.MySQL导入HDFS

二.MySQL导入Hive

2.增量导入

一.过滤导入hdfs/hive

二.导出


一.安装

1.下载地址:sqoop下载地址

2.解压

python 复制代码
tar -zxvf ./sqoop-1.4.7.bin__hadoop-2.6.0.tar.gz -C ../module/

3.改名和配置归属权限

bash 复制代码
#改名
mv sqoop-1.4.7.bin__hadoop-2.6.0 sqoop
#设置归属用户名和用户组(如果是root权限登入可以无需配置)
chown -R root:root sqoop

4.配置环境变量

vim /etc/profile

最后刷新配置: source /etc/profile

验证是否安装好sqoop
bash 复制代码
sqoop list-databases -connect jdbc:mysql://bigdata1:3306 --username root --password 123456

二.导入

1.全量导入

一.MySQL导入HDFS

python 复制代码
sqoop import                                              #导入
--connect jdbc:mysql://bigdata1:3306/ds_db01 \            #配置连接url地址
--username root \                                         #用户名
--password 123456 \                                        #密码
--delete-target-dir \                                       #如果该地址存在则删除
--target-dir /mydata2 \                                     #hdfs目标路径
--fields-terminated-by '\t'   \                            #配置它的列分隔符
--table brand_info \                                        #mysql表名
--m 1                                      #配置map数为1,因为整个过程中只用了map没有reduce

查看是否导入成功

二.MySQL导入Hive

注意:

--hive-import 的配置项要在 --hive-database 之前

python 复制代码
sqoop import   \                      #导入
--connect jdbc:mysql://bigdata1:3306/ds_db01 \    #url和mysql库名
--username root \                          #用户名
--password 123456 \                       #密码
--table supplier_info \                    #数据库表名
--hive-import   \                          #导入hive
 --m 1  \                                  #map并行度
--hive-database sqoop_db;                  #hive目标数据库

查看hive中是否导入成功

2.增量导入

将满足条件的数据抽取到hdfs或hive,需要用到配置参数为 --where '表达式'

一.过滤导入hdfs/hive

1.1原表数据:

1.2增量导入命令

注意: where一般位于--table

python 复制代码
sqoop import -connect jdbc:mysql://bigdata1:3306/gehui  \
--username root                        \
--password 123456                        \
--where "tel=999999"      \       #设置增量条件
--table user          \
--target-dir /mydata4      \
--fields-terminated-by '\t'     \ 
--m 1 

1.3增量导入结果

二.导出

hdfs导出到mysql中

python 复制代码
sqoop export \
--connect jdbc:mysql:///gehui:3306?characterEncoding=UTF-8 \
--username root \
--password 123456\
--table test1 \
--m 1  \
--export-dir /root/sort-result   #需要导出的目录

--export-dir : 参数指定要从中导出数据的HDFS目录。

相关推荐
m0_740043731 天前
Spring_全面详解入门
数据仓库·hive·hadoop
皓空揽月1 天前
windows安装hadoop2.7.2教程(单机版)
hadoop·windows
青云交2 天前
Java 大视界 -- Java 大数据在智能教育学习成果评估体系完善与教育质量提升中的深度应用(434)
java·hive·spark·智能教育·学习成果评估·教育质量提升·实时评估
咨询QQ:4877392783 天前
探索Qt下的UI皮肤生成器:多风格与编译那些事儿
hive
阿杰同学3 天前
Hadoop 面试题及答案整理,最新面试题
大数据·hadoop·分布式
皓空揽月3 天前
Ubuntu 单机安装 Hadoop 3.2.4教程
linux·hadoop·ubuntu
lalala_lulu3 天前
Jsp的四种作用域(超详细)
java·开发语言·hive
写代码的【黑咖啡】4 天前
HDFS简介及其存储机制详解
大数据·hadoop·hdfs
俊哥大数据4 天前
【项目实战1】大数据项目开发案例---新闻资讯离线分析|实时分析|大数据仓库|推荐系统|数据可视化项目
数据仓库·hadoop·flink·spark·推荐系统·实时分析·离线分析
忘记9264 天前
Servlet 生命周期
数据仓库·hive·hadoop