【论文精读】PlanT: Explainable Planning Transformers via Object-Level Representations

1 基本信息

院校:德国的图宾根大学

网站:https://www.katrinrenz.de/plant

2 论文背景

2.1 现有问题

现在的基于学习的方法使用高精地图和BEV,认为准确的(达到像素级的pixel-level)场景理解是鲁棒的输出的关键。recovering pixel-level BEV information from sensor inputs。

2.2 作者的想法

作者认为这么丰富的信息是不必要的,仅仅使用低维的(物体级的object-level)特征------周车和routing信息即可。

3 解决办法

3.1 Tokenization

tokenization是指从场景如何获取token的过程。作者用的carla,细节略。直接看的得到的token。

Vt是车辆信息,St是routing信息。包含类型z,相对于自车的bouding box的位置x和y,长宽h和w,方向fai,一共6维。

3.2 Token Embeddings

将tokens输入给一个线性层,原来的6维变成H(hidden)维,再分别加入偏置ev和es,得到e。

3.3 自车规划任务

输入是3.2的线性化后的Vt+St和一个cls token(H维),transformer采用了BERT架构,输出采用GRU,通过自回归的方式输出Wx2的轨迹点。

3.4 周车预测任务

将transformer的输出h(每个周车都有h),经过一个线性层linear layer预测速度/位置/方向等。

3.5 loss设计

自车规划任务:自车轨迹的l1loss。

周车预测任务:交叉熵损失。

相关推荐
找了一圈尾巴10 小时前
大模型-量化技术
人工智能·大模型
xiaoyaolangwj15 小时前
AGX Xavier 搭建360环视教程【一、先确认方案】
目标检测·机器人·自动驾驶
SoaringPigeon16 小时前
端到端自动驾驶:挑战与前沿
人工智能·机器学习·自动驾驶
阿里云大数据AI技术17 小时前
基于MaxCompute MaxFrame 汽车自动驾驶数据预处理最佳实践
大数据·人工智能·自动驾驶
胡耀超19 小时前
GraphRAG Docker化部署,接入本地Ollama完整技术指南:从零基础到生产部署的系统性知识体系
运维·docker·容器·大模型·知识图谱·rag·ollama
AndrewHZ1 天前
【图像处理基石】如何入门大规模三维重建?
人工智能·深度学习·大模型·llm·三维重建·立体视觉·大规模三维重建
两棵雪松2 天前
Faiss能解决什么问题?Faiss是什么?
人工智能·大模型
喜欢吃豆2 天前
深入企业内部的MCP知识(四):FastMCP装饰器与类方法:正确结合面向对象与MCP组件的实践指南
人工智能·python·大模型·mcp
SoaringPigeon2 天前
从深度学习的角度看自动驾驶
人工智能·深度学习·自动驾驶
产品经理独孤虾2 天前
如何利用AI大模型对已有创意进行评估,打造杀手级的广告创意
人工智能·大模型·aigc·产品经理·数字营销·智能营销·智能创意生成