【论文精读】PlanT: Explainable Planning Transformers via Object-Level Representations

1 基本信息

院校:德国的图宾根大学

网站:https://www.katrinrenz.de/plant

2 论文背景

2.1 现有问题

现在的基于学习的方法使用高精地图和BEV,认为准确的(达到像素级的pixel-level)场景理解是鲁棒的输出的关键。recovering pixel-level BEV information from sensor inputs。

2.2 作者的想法

作者认为这么丰富的信息是不必要的,仅仅使用低维的(物体级的object-level)特征------周车和routing信息即可。

3 解决办法

3.1 Tokenization

tokenization是指从场景如何获取token的过程。作者用的carla,细节略。直接看的得到的token。

Vt是车辆信息,St是routing信息。包含类型z,相对于自车的bouding box的位置x和y,长宽h和w,方向fai,一共6维。

3.2 Token Embeddings

将tokens输入给一个线性层,原来的6维变成H(hidden)维,再分别加入偏置ev和es,得到e。

3.3 自车规划任务

输入是3.2的线性化后的Vt+St和一个cls token(H维),transformer采用了BERT架构,输出采用GRU,通过自回归的方式输出Wx2的轨迹点。

3.4 周车预测任务

将transformer的输出h(每个周车都有h),经过一个线性层linear layer预测速度/位置/方向等。

3.5 loss设计

自车规划任务:自车轨迹的l1loss。

周车预测任务:交叉熵损失。

相关推荐
少林码僧15 小时前
2.9 字段分箱技术详解:连续变量离散化,提升模型效果的关键步骤
人工智能·ai·数据分析·大模型
AI情报挖掘日志15 小时前
AGI-Next前沿峰会「沉思报告」——中国AGI背后的产业逻辑与战略分野
大模型·aminer·大模型研究
程序员黄老师18 小时前
主流向量数据库全面解析
数据库·大模型·向量·rag
何中应21 小时前
快速上架第一个智能体
ai·大模型·智能体开发
victory043121 小时前
大模型学习阶段总结和下一阶段展望
深度学习·学习·大模型
下海fallsea1 天前
避开欧美红海,深耕中东沙漠:萝卜快跑的差异化出海能走多远?
自动驾驶
谷哥的小弟1 天前
Brave Search MCP服务器安装以及客户端连接配置
搜索引擎·大模型·spring ai·mcp·brave search
星云数灵1 天前
大模型高级工程师考试练习题7
数据库·大模型·阿里云acp·大模型工程师·大模型考试题库·阿里云aca·大模型工程师acp
m0_650108241 天前
VGGT-Long:突破千米级长 RGB 序列单目 3D 重建的极限
自动驾驶·机器人导航·vggt·3d视觉基础模型·千米级单目3d重建·通用模型·分块-对齐-闭环-全局优化
星云数灵2 天前
大模型高级工程师考试练习题6
人工智能·大模型·大模型工程师·阿里云大模型aca·阿里云大模型工程师acp·大模型acp考试题库·acp认证