【论文精读】PlanT: Explainable Planning Transformers via Object-Level Representations

1 基本信息

院校:德国的图宾根大学

网站:https://www.katrinrenz.de/plant

2 论文背景

2.1 现有问题

现在的基于学习的方法使用高精地图和BEV,认为准确的(达到像素级的pixel-level)场景理解是鲁棒的输出的关键。recovering pixel-level BEV information from sensor inputs。

2.2 作者的想法

作者认为这么丰富的信息是不必要的,仅仅使用低维的(物体级的object-level)特征------周车和routing信息即可。

3 解决办法

3.1 Tokenization

tokenization是指从场景如何获取token的过程。作者用的carla,细节略。直接看的得到的token。

Vt是车辆信息,St是routing信息。包含类型z,相对于自车的bouding box的位置x和y,长宽h和w,方向fai,一共6维。

3.2 Token Embeddings

将tokens输入给一个线性层,原来的6维变成H(hidden)维,再分别加入偏置ev和es,得到e。

3.3 自车规划任务

输入是3.2的线性化后的Vt+St和一个cls token(H维),transformer采用了BERT架构,输出采用GRU,通过自回归的方式输出Wx2的轨迹点。

3.4 周车预测任务

将transformer的输出h(每个周车都有h),经过一个线性层linear layer预测速度/位置/方向等。

3.5 loss设计

自车规划任务:自车轨迹的l1loss。

周车预测任务:交叉熵损失。

相关推荐
石去皿11 分钟前
从本地知识库到“活”知识——RAG 落地全景指南
c++·python·大模型·rag
小白考证进阶中23 分钟前
阿里云ACA认证常见问题答疑
阿里云·大模型·云计算·阿里云aca证书·阿里云aca·aca认证·入门证书
退休钓鱼选手2 小时前
BehaviorTree行为树-机器人及自动驾驶
人工智能·自动驾驶
杀生丸学AI3 小时前
【平面重建】3D高斯平面:混合2D/3D光场重建(NeurIPS2025)
人工智能·平面·3d·大模型·aigc·高斯泼溅·空间智能
yuanmenghao3 小时前
CAN系列 — (3) Radar Object List 在 MCU 内部是如何被拼装、校验并最终被消费的?
单片机·嵌入式硬件·自动驾驶·信息与通信
夏秃然3 小时前
打破预测与决策的孤岛:如何构建“能源垂类大模型”?
算法·ai·大模型
韦东东3 小时前
行业资讯日报自动化:从采集到 LLM 生成的全链路拆解(以政务网站为例)
运维·人工智能·自动化·大模型·llm·政务·行业资讯
yuanmenghao3 小时前
CAN系列 — (4) Radar Header 报文:为什么它是 MCU 感知周期的“锚点”
网络·单片机·自动驾驶·信息与通信
CoderOnly4 小时前
【代码】deepspeed保存的checkpoint转换为huggingface格式safetensors(fp16)
大模型
Want5954 小时前
未来AI会取代人类吗?
人工智能·大模型·aigc