【论文精读】PlanT: Explainable Planning Transformers via Object-Level Representations

1 基本信息

院校:德国的图宾根大学

网站:https://www.katrinrenz.de/plant

2 论文背景

2.1 现有问题

现在的基于学习的方法使用高精地图和BEV,认为准确的(达到像素级的pixel-level)场景理解是鲁棒的输出的关键。recovering pixel-level BEV information from sensor inputs。

2.2 作者的想法

作者认为这么丰富的信息是不必要的,仅仅使用低维的(物体级的object-level)特征------周车和routing信息即可。

3 解决办法

3.1 Tokenization

tokenization是指从场景如何获取token的过程。作者用的carla,细节略。直接看的得到的token。

Vt是车辆信息,St是routing信息。包含类型z,相对于自车的bouding box的位置x和y,长宽h和w,方向fai,一共6维。

3.2 Token Embeddings

将tokens输入给一个线性层,原来的6维变成H(hidden)维,再分别加入偏置ev和es,得到e。

3.3 自车规划任务

输入是3.2的线性化后的Vt+St和一个cls token(H维),transformer采用了BERT架构,输出采用GRU,通过自回归的方式输出Wx2的轨迹点。

3.4 周车预测任务

将transformer的输出h(每个周车都有h),经过一个线性层linear layer预测速度/位置/方向等。

3.5 loss设计

自车规划任务:自车轨迹的l1loss。

周车预测任务:交叉熵损失。

相关推荐
秉承初心1 天前
ModelEngine 就像搭积木:技术原理是零件,选型案例是说明书
ai·大模型·modelengine
二进制_博客1 天前
SpringAI智能助手案例
大模型·springai
yuanmenghao1 天前
CAN系列 — (6) CAN FD 带宽、CPU、中断:工程上是如何一起算的?
网络·驱动开发·单片机·mcu·自动驾驶·信息与通信
小烤箱1 天前
Autoware Universe 感知模块详解 | 第十二节 CUDA 编程基础——CUDA执行模型
自动驾驶·cuda·感知
Hi202402171 天前
如何通过选择正确的畸变模型解决相机标定难题
人工智能·数码相机·计算机视觉·自动驾驶
Haooog1 天前
RAG医疗问答系统
java·大模型·项目·rag
CoderJia程序员甲2 天前
GitHub 热榜项目 - 日榜(2026-1-9)
开源·大模型·llm·github·ai教程
喜欢吃豆2 天前
深度解析:FFmpeg 远程流式解复用原理与工程实践
人工智能·架构·ffmpeg·大模型·音视频·多模态
yuanmenghao2 天前
CAN系列 — (8) 为什么 Radar Object List 不适合“直接走 CAN 信号”
网络·数据结构·单片机·嵌入式硬件·自动驾驶·信息与通信
RockHopper20252 天前
驾驶认知的本质:人类模式 vs 端到端自动驾驶
人工智能·神经网络·机器学习·自动驾驶·具身认知