【论文精读】PlanT: Explainable Planning Transformers via Object-Level Representations

1 基本信息

院校:德国的图宾根大学

网站:https://www.katrinrenz.de/plant

2 论文背景

2.1 现有问题

现在的基于学习的方法使用高精地图和BEV,认为准确的(达到像素级的pixel-level)场景理解是鲁棒的输出的关键。recovering pixel-level BEV information from sensor inputs。

2.2 作者的想法

作者认为这么丰富的信息是不必要的,仅仅使用低维的(物体级的object-level)特征------周车和routing信息即可。

3 解决办法

3.1 Tokenization

tokenization是指从场景如何获取token的过程。作者用的carla,细节略。直接看的得到的token。

Vt是车辆信息,St是routing信息。包含类型z,相对于自车的bouding box的位置x和y,长宽h和w,方向fai,一共6维。

3.2 Token Embeddings

将tokens输入给一个线性层,原来的6维变成H(hidden)维,再分别加入偏置ev和es,得到e。

3.3 自车规划任务

输入是3.2的线性化后的Vt+St和一个cls token(H维),transformer采用了BERT架构,输出采用GRU,通过自回归的方式输出Wx2的轨迹点。

3.4 周车预测任务

将transformer的输出h(每个周车都有h),经过一个线性层linear layer预测速度/位置/方向等。

3.5 loss设计

自车规划任务:自车轨迹的l1loss。

周车预测任务:交叉熵损失。

相关推荐
小新学习屋1 小时前
大模型-提示工程
chatgpt·大模型·提示工程
lqqjuly8 小时前
Lidar调试记录Ⅳ之Ubuntu22.04+ROS2+Livox_SDK2环境下编译Livox ROS Driver 2
人工智能·机器人·自动驾驶
BestOrNothing_20159 小时前
运动学模型推导 + 离散化 + 工程化版本(适用于前方单舵轮 AGV / 自动驾驶 / MPC)
自动驾驶·mpc·模型预测控制·运动学模型·转向小车
zhangbaolin10 小时前
深度智能体-人机回环
langchain·大模型·人机交互·深度智能体
数据与后端架构提升之路16 小时前
小鹏VLA 2.0的“神秘涌现”:从痛苦到突破,自动驾驶与机器人如何突然“开窍”?
人工智能·机器人·自动驾驶
zhangbaolin18 小时前
深度智能体的中间件
中间件·langchain·大模型·深度智能体
拓端研究室19 小时前
专题:2025构建全自动驾驶汽车生态系统:中国智能驾驶行业全景研究报告|附80+份报告PDF、数据仪表盘汇总下载
pdf·自动驾驶·汽车
温柔哥`1 天前
PANDA:通过代理型 AI 工程师迈向通用视频异常检测
大模型·agent·rag·vad·视频异常检测·工具调用·mllms
喜欢吃豆1 天前
Parquet 范式:大语言模型训练数据格式优化的基础解析
人工智能·语言模型·自然语言处理·大模型·parquet
地平线开发者1 天前
不同传感器前中后融合方案简介
算法·自动驾驶