【论文精读】PlanT: Explainable Planning Transformers via Object-Level Representations

1 基本信息

院校:德国的图宾根大学

网站:https://www.katrinrenz.de/plant

2 论文背景

2.1 现有问题

现在的基于学习的方法使用高精地图和BEV,认为准确的(达到像素级的pixel-level)场景理解是鲁棒的输出的关键。recovering pixel-level BEV information from sensor inputs。

2.2 作者的想法

作者认为这么丰富的信息是不必要的,仅仅使用低维的(物体级的object-level)特征------周车和routing信息即可。

3 解决办法

3.1 Tokenization

tokenization是指从场景如何获取token的过程。作者用的carla,细节略。直接看的得到的token。

Vt是车辆信息,St是routing信息。包含类型z,相对于自车的bouding box的位置x和y,长宽h和w,方向fai,一共6维。

3.2 Token Embeddings

将tokens输入给一个线性层,原来的6维变成H(hidden)维,再分别加入偏置ev和es,得到e。

3.3 自车规划任务

输入是3.2的线性化后的Vt+St和一个cls token(H维),transformer采用了BERT架构,输出采用GRU,通过自回归的方式输出Wx2的轨迹点。

3.4 周车预测任务

将transformer的输出h(每个周车都有h),经过一个线性层linear layer预测速度/位置/方向等。

3.5 loss设计

自车规划任务:自车轨迹的l1loss。

周车预测任务:交叉熵损失。

相关推荐
Wild_Pointer.3 小时前
面向Qt/C++开发工程师的Ai提示词(附Trae示例)
人工智能·ai·大模型
喜欢吃豆9 小时前
从潜在空间到实际应用:Embedding模型架构与训练范式的综合解析
python·自然语言处理·架构·大模型·微调·embedding
CoderJia程序员甲10 小时前
GitHub 热榜项目 - 日榜(2025-10-10)
ai·开源·大模型·github·ai教程
喜欢吃豆11 小时前
从指令到智能:大型语言模型提示词工程与上下文工程的综合分析
人工智能·语言模型·自然语言处理·大模型·提示词工程·上下文工程
ARM+FPGA+AI工业主板定制专家12 小时前
基于NVIDIA ORIN+FPGA+AI自动驾驶硬件在环注入测试
人工智能·fpga开发·机器人·自动驾驶
飞机火车巴雷特15 小时前
【论文阅读】Debating with More Persuasive LLMs Leads to More Truthful Answers
论文阅读·大模型·辩论机制
喜欢吃豆17 小时前
多轮智能对话系统架构方案(可实战):从基础模型到自我优化的对话智能体,数据飞轮的重要性
人工智能·语言模型·自然语言处理·系统架构·大模型·多轮智能对话系统
Jolie_Liang1 天前
金融大模型应用现状及未来趋势研究:国内外对比分析
金融·大模型
过往入尘土1 天前
服务端与客户端的简单链接
人工智能·python·算法·pycharm·大模型
居7然1 天前
京东开源王炸!JoyAgent-JDGenie如何重新定义智能体开发?
人工智能·开源·大模型·mcp