【论文精读】PlanT: Explainable Planning Transformers via Object-Level Representations

1 基本信息

院校:德国的图宾根大学

网站:https://www.katrinrenz.de/plant

2 论文背景

2.1 现有问题

现在的基于学习的方法使用高精地图和BEV,认为准确的(达到像素级的pixel-level)场景理解是鲁棒的输出的关键。recovering pixel-level BEV information from sensor inputs。

2.2 作者的想法

作者认为这么丰富的信息是不必要的,仅仅使用低维的(物体级的object-level)特征------周车和routing信息即可。

3 解决办法

3.1 Tokenization

tokenization是指从场景如何获取token的过程。作者用的carla,细节略。直接看的得到的token。

Vt是车辆信息,St是routing信息。包含类型z,相对于自车的bouding box的位置x和y,长宽h和w,方向fai,一共6维。

3.2 Token Embeddings

将tokens输入给一个线性层,原来的6维变成H(hidden)维,再分别加入偏置ev和es,得到e。

3.3 自车规划任务

输入是3.2的线性化后的Vt+St和一个cls token(H维),transformer采用了BERT架构,输出采用GRU,通过自回归的方式输出Wx2的轨迹点。

3.4 周车预测任务

将transformer的输出h(每个周车都有h),经过一个线性层linear layer预测速度/位置/方向等。

3.5 loss设计

自车规划任务:自车轨迹的l1loss。

周车预测任务:交叉熵损失。

相关推荐
过河卒_zh1566766几秒前
网信发布2025年“人工智能+政务”规范应用案例拟入选名单公示
人工智能·大模型·aigc·政务·算法备案
Chukai1235 分钟前
第1章:了解大模型与RAG
大模型·rag
大模型教程.1 小时前
收藏级教程:ReAct模式详解,让大模型从回答问题到解决问题
前端·人工智能·机器学习·前端框架·大模型·产品经理·react
JoannaJuanCV2 小时前
自动驾驶—CARLA仿真(21)manual_control_carsim demo
人工智能·机器学习·自动驾驶
MarkHD2 小时前
智能体在车联网中的应用:第11天 CARLA自动驾驶仿真入门:从零安装到理解客户端-服务器架构
服务器·架构·自动驾驶
程序猿追4 小时前
在昇腾NPU上实战部署LongCat-Video:从环境配置到长视频生成的完整指南
python·大模型·华为云·音视频
KAI智习17 小时前
大模型榜单周报(2025/12/20)
人工智能·大模型
咩图19 小时前
使用ollama完成私有大模型搭建
大模型·ollama·私有化
我很哇塞耶19 小时前
BOSS直聘3B超越Qwen3-32B,更多训练数据刷新小模型极限
人工智能·ai·大模型
骚戴1 天前
n1n:从替代LiteLLM Proxy自建网关到企业级统一架构的进阶之路
人工智能·python·大模型·llm·gateway·api