ZKP16 Hardware Acceleration of ZKP

ZKP学习笔记

ZK-Learning MOOC课程笔记

Lecture 16: Hardware Acceleration of ZKP (Guest Lecturer: Kelly Olson)

  • The What and Why of Hardware Acceleration

    • Hardware acceleration is the use of dedicated hardware to accelerate an operation so that it runs faster and/or more efficiently.
    • Hardware acceleration can involve optimizing functions and code to use existing hardware (COTS) or it may involve the development of new hardware designed for a specific task.
      • COTS (commercially available off-the-shelf) hardware includes CPUs, GPUs, and FPGAS
      • Custom hardware is often referred to as an ASIC
    • Examples
  • Hardware acceleration for crytpo

  • Why HW acceleration for ZKP

    • ZK (and non-ZK) proof generation has high overheads relative to native computation
  • Goals of HW acceleration for ZKP

    • Throughput: increase the number of operations per system
    • Cost: reduce the cost of operation e.g. Bitcoin mining rigs are designed to reduce capital expenses ($/hash) and operational expenses (watts/hash)
    • Latency: reduce the time of an individual operation e.g. 2kBridges may want to reduce the proof generation time for faster finality
  • Key Computational Primitives of ZKP

    • Each proof system, and associated implementation will have slightly different computational requirements.

    • Across a variety of proof systems these are three of the most computationally expensive operations

      • Multiscalar Multiplication (MSM)
        • A 'dot product' of elliptic curve points and scalars

        • Easily paralledizable

        • Optimization

          • When performing a MSM off of the host device, the scalars and sometimes points must be moved to the accelerator. The available communication bandwidth limits the maximum possible performance of the accelerator.
      • Number Theoretic Transformation (NTT)
        • Common algorithms like Cooley-Tukey reduce complexity from O ( N 2 ) O(N^2) O(N2) to O ( N I o g N ) O(NIogN) O(NIogN)
        • Not Easily paralledizable
        • Furthermore, these elements must be kept in memory to be operated on, imposing high memory requirements
      • Arithmetic Hashes (e.g., Poseidon)
    • SNARK V.S. STARK

      • The MSM, NTT and Hashes take 2/3 or more time in the proving system
    • Foundational Primitive: Finite Field Arithmetic (especially ModMul)

  • Hardware Resources Required

    • Determining Computational Cost

    • Selecting the Right Hardware

      • Given that these workload are driven predominately by modular multiplication, we should look for platforms can perform a large number of multiplications, quickly and cheaply
      • Estimated HW performance can be evaluated by looking at # of hardware multipliers, size of hardware multipliers, and speed/frequency of each instruction
      • Examples
    • Two Key Components to HW Acceleration

      • 'HW friendly' Algorithm
      • Efficient Implementation
  • Limits of Acceleration

    • Acceleration Pitfalls

    • Production Examples: Filecoin

  • Current Status of Hardware Acceleration

  • Future Directions for Hardware Acceleration

相关推荐
wb18926 分钟前
流编辑器sed
运维·笔记·ubuntu·云计算
嵌入式@秋刀鱼2 小时前
《第四章-筋骨淬炼》 C++修炼生涯笔记(基础篇)数组与函数
开发语言·数据结构·c++·笔记·算法·链表·visual studio code
嵌入式@秋刀鱼2 小时前
《第五章-心法进阶》 C++修炼生涯笔记(基础篇)指针与结构体⭐⭐⭐⭐⭐
c语言·开发语言·数据结构·c++·笔记·算法·visual studio code
m0_678693333 小时前
深度学习笔记26-天气预测(Tensorflow)
笔记·深度学习·tensorflow
桂?3 小时前
使用离线依赖解决Android Studio编译报错(下载不了jar)——笔记
笔记·android studio·jar
EQ-雪梨蛋花汤4 小时前
【Unity笔记】Unity Animation组件使用详解:Play方法重载与动画播放控制
笔记·unity·游戏引擎
scdifsn4 小时前
动手学深度学习13.3. 目标检测和边界框-笔记&练习(PyTorch)
笔记·深度学习·目标检测·目标识别·标注边界框
霸王蟹5 小时前
前端项目Excel数据导出同时出现中英文表头错乱情况解决方案。
笔记·学习·typescript·excel·vue3·react·vite
LuH11245 小时前
【论文阅读笔记】ICLR 2025 | 解析Ref-Gaussian如何实现高质量可交互反射渲染
论文阅读·笔记·论文笔记
AgilityBaby6 小时前
Untiy打包安卓踩坑
android·笔记·学习·unity·游戏引擎