ZKP16 Hardware Acceleration of ZKP

ZKP学习笔记

ZK-Learning MOOC课程笔记

Lecture 16: Hardware Acceleration of ZKP (Guest Lecturer: Kelly Olson)

  • The What and Why of Hardware Acceleration

    • Hardware acceleration is the use of dedicated hardware to accelerate an operation so that it runs faster and/or more efficiently.
    • Hardware acceleration can involve optimizing functions and code to use existing hardware (COTS) or it may involve the development of new hardware designed for a specific task.
      • COTS (commercially available off-the-shelf) hardware includes CPUs, GPUs, and FPGAS
      • Custom hardware is often referred to as an ASIC
    • Examples
  • Hardware acceleration for crytpo

  • Why HW acceleration for ZKP

    • ZK (and non-ZK) proof generation has high overheads relative to native computation
  • Goals of HW acceleration for ZKP

    • Throughput: increase the number of operations per system
    • Cost: reduce the cost of operation e.g. Bitcoin mining rigs are designed to reduce capital expenses ($/hash) and operational expenses (watts/hash)
    • Latency: reduce the time of an individual operation e.g. 2kBridges may want to reduce the proof generation time for faster finality
  • Key Computational Primitives of ZKP

    • Each proof system, and associated implementation will have slightly different computational requirements.

    • Across a variety of proof systems these are three of the most computationally expensive operations

      • Multiscalar Multiplication (MSM)
        • A 'dot product' of elliptic curve points and scalars

        • Easily paralledizable

        • Optimization

          • When performing a MSM off of the host device, the scalars and sometimes points must be moved to the accelerator. The available communication bandwidth limits the maximum possible performance of the accelerator.
      • Number Theoretic Transformation (NTT)
        • Common algorithms like Cooley-Tukey reduce complexity from O ( N 2 ) O(N^2) O(N2) to O ( N I o g N ) O(NIogN) O(NIogN)
        • Not Easily paralledizable
        • Furthermore, these elements must be kept in memory to be operated on, imposing high memory requirements
      • Arithmetic Hashes (e.g., Poseidon)
    • SNARK V.S. STARK

      • The MSM, NTT and Hashes take 2/3 or more time in the proving system
    • Foundational Primitive: Finite Field Arithmetic (especially ModMul)

  • Hardware Resources Required

    • Determining Computational Cost

    • Selecting the Right Hardware

      • Given that these workload are driven predominately by modular multiplication, we should look for platforms can perform a large number of multiplications, quickly and cheaply
      • Estimated HW performance can be evaluated by looking at # of hardware multipliers, size of hardware multipliers, and speed/frequency of each instruction
      • Examples
    • Two Key Components to HW Acceleration

      • 'HW friendly' Algorithm
      • Efficient Implementation
  • Limits of Acceleration

    • Acceleration Pitfalls

    • Production Examples: Filecoin

  • Current Status of Hardware Acceleration

  • Future Directions for Hardware Acceleration

相关推荐
charlie1145141914 小时前
CSS笔记4:CSS:列表、边框、表格、背景、鼠标与常用长度单位
css·笔记·学习·css3·教程
tjsoft5 小时前
汇通家具管理软件 1.0 试用笔记
笔记
卡提西亚6 小时前
C++笔记-10-循环语句
c++·笔记·算法
Cathy Bryant6 小时前
概率论直觉(一):大数定律
笔记·考研·数学建模
摇滚侠7 小时前
Spring Boot3零基础教程,Reactive-Stream 四大核心组件,笔记106
java·spring boot·笔记
✎ ﹏梦醒͜ღ҉繁华落℘8 小时前
FreeRTOS学习笔记(应用)-- 各种 信号量的应用场景
笔记·学习
星星火柴9368 小时前
笔记 | C++面向对象高级开发
开发语言·c++·笔记·学习
BeingACoder8 小时前
【SAA】SpringAI Alibaba学习笔记(一):SSE与WS的区别以及如何注入多个AI模型
java·笔记·学习·saa·springai
安全不再安全9 小时前
免杀技巧 - 早鸟注入详细学习笔记
linux·windows·笔记·学习·测试工具·web安全·网络安全
LBuffer10 小时前
破解入门学习笔记题三十八
笔记·学习