ZKP16 Hardware Acceleration of ZKP

ZKP学习笔记

ZK-Learning MOOC课程笔记

Lecture 16: Hardware Acceleration of ZKP (Guest Lecturer: Kelly Olson)

  • The What and Why of Hardware Acceleration

    • Hardware acceleration is the use of dedicated hardware to accelerate an operation so that it runs faster and/or more efficiently.
    • Hardware acceleration can involve optimizing functions and code to use existing hardware (COTS) or it may involve the development of new hardware designed for a specific task.
      • COTS (commercially available off-the-shelf) hardware includes CPUs, GPUs, and FPGAS
      • Custom hardware is often referred to as an ASIC
    • Examples
  • Hardware acceleration for crytpo

  • Why HW acceleration for ZKP

    • ZK (and non-ZK) proof generation has high overheads relative to native computation
  • Goals of HW acceleration for ZKP

    • Throughput: increase the number of operations per system
    • Cost: reduce the cost of operation e.g. Bitcoin mining rigs are designed to reduce capital expenses ($/hash) and operational expenses (watts/hash)
    • Latency: reduce the time of an individual operation e.g. 2kBridges may want to reduce the proof generation time for faster finality
  • Key Computational Primitives of ZKP

    • Each proof system, and associated implementation will have slightly different computational requirements.

    • Across a variety of proof systems these are three of the most computationally expensive operations

      • Multiscalar Multiplication (MSM)
        • A 'dot product' of elliptic curve points and scalars

        • Easily paralledizable

        • Optimization

          • When performing a MSM off of the host device, the scalars and sometimes points must be moved to the accelerator. The available communication bandwidth limits the maximum possible performance of the accelerator.
      • Number Theoretic Transformation (NTT)
        • Common algorithms like Cooley-Tukey reduce complexity from O ( N 2 ) O(N^2) O(N2) to O ( N I o g N ) O(NIogN) O(NIogN)
        • Not Easily paralledizable
        • Furthermore, these elements must be kept in memory to be operated on, imposing high memory requirements
      • Arithmetic Hashes (e.g., Poseidon)
    • SNARK V.S. STARK

      • The MSM, NTT and Hashes take 2/3 or more time in the proving system
    • Foundational Primitive: Finite Field Arithmetic (especially ModMul)

  • Hardware Resources Required

    • Determining Computational Cost

    • Selecting the Right Hardware

      • Given that these workload are driven predominately by modular multiplication, we should look for platforms can perform a large number of multiplications, quickly and cheaply
      • Estimated HW performance can be evaluated by looking at # of hardware multipliers, size of hardware multipliers, and speed/frequency of each instruction
      • Examples
    • Two Key Components to HW Acceleration

      • 'HW friendly' Algorithm
      • Efficient Implementation
  • Limits of Acceleration

    • Acceleration Pitfalls

    • Production Examples: Filecoin

  • Current Status of Hardware Acceleration

  • Future Directions for Hardware Acceleration

相关推荐
Mr Sorry3 小时前
Non-stationary Diffusion For Probabilistic Time Series Forecasting论文阅读笔记
论文阅读·笔记
南猿北者4 小时前
Cmake学习笔记
笔记·学习·策略模式
码小文5 小时前
Altium Designer 22使用笔记(8)---PCB电气约束设置
笔记·嵌入式硬件·硬件工程·ad22
UserNamezhangxi7 小时前
kotlin 协程笔记
java·笔记·kotlin·协程
翻滚的小@强11 小时前
数据挖掘笔记:点到线段的距离计算
人工智能·笔记·数据挖掘
会思考的猴子11 小时前
UE5 PCG 笔记(二) Difference 节点
笔记·ue5
yuxb7311 小时前
Linux 文本处理与 Shell 编程笔记:正则表达式、sed、awk 与变量脚本
linux·笔记·正则表达式
饕餮争锋14 小时前
设计模式笔记_行为型_访问者模式
笔记·设计模式·访问者模式
不羁。。16 小时前
【撸靶笔记】第七关:GET - Dump into outfile - String
数据库·笔记·oracle
好望角雾眠21 小时前
第一阶段C#基础-10:集合(Arraylist,list,Dictionary等)
笔记·学习·c#