ZKP16 Hardware Acceleration of ZKP

ZKP学习笔记

ZK-Learning MOOC课程笔记

Lecture 16: Hardware Acceleration of ZKP (Guest Lecturer: Kelly Olson)

  • The What and Why of Hardware Acceleration

    • Hardware acceleration is the use of dedicated hardware to accelerate an operation so that it runs faster and/or more efficiently.
    • Hardware acceleration can involve optimizing functions and code to use existing hardware (COTS) or it may involve the development of new hardware designed for a specific task.
      • COTS (commercially available off-the-shelf) hardware includes CPUs, GPUs, and FPGAS
      • Custom hardware is often referred to as an ASIC
    • Examples
  • Hardware acceleration for crytpo

  • Why HW acceleration for ZKP

    • ZK (and non-ZK) proof generation has high overheads relative to native computation
  • Goals of HW acceleration for ZKP

    • Throughput: increase the number of operations per system
    • Cost: reduce the cost of operation e.g. Bitcoin mining rigs are designed to reduce capital expenses ($/hash) and operational expenses (watts/hash)
    • Latency: reduce the time of an individual operation e.g. 2kBridges may want to reduce the proof generation time for faster finality
  • Key Computational Primitives of ZKP

    • Each proof system, and associated implementation will have slightly different computational requirements.

    • Across a variety of proof systems these are three of the most computationally expensive operations

      • Multiscalar Multiplication (MSM)
        • A 'dot product' of elliptic curve points and scalars

        • Easily paralledizable

        • Optimization

          • When performing a MSM off of the host device, the scalars and sometimes points must be moved to the accelerator. The available communication bandwidth limits the maximum possible performance of the accelerator.
      • Number Theoretic Transformation (NTT)
        • Common algorithms like Cooley-Tukey reduce complexity from O ( N 2 ) O(N^2) O(N2) to O ( N I o g N ) O(NIogN) O(NIogN)
        • Not Easily paralledizable
        • Furthermore, these elements must be kept in memory to be operated on, imposing high memory requirements
      • Arithmetic Hashes (e.g., Poseidon)
    • SNARK V.S. STARK

      • The MSM, NTT and Hashes take 2/3 or more time in the proving system
    • Foundational Primitive: Finite Field Arithmetic (especially ModMul)

  • Hardware Resources Required

    • Determining Computational Cost

    • Selecting the Right Hardware

      • Given that these workload are driven predominately by modular multiplication, we should look for platforms can perform a large number of multiplications, quickly and cheaply
      • Estimated HW performance can be evaluated by looking at # of hardware multipliers, size of hardware multipliers, and speed/frequency of each instruction
      • Examples
    • Two Key Components to HW Acceleration

      • 'HW friendly' Algorithm
      • Efficient Implementation
  • Limits of Acceleration

    • Acceleration Pitfalls

    • Production Examples: Filecoin

  • Current Status of Hardware Acceleration

  • Future Directions for Hardware Acceleration

相关推荐
非 白1 小时前
数据结构——树
数据结构·笔记·考研
E___V___E4 小时前
MySQL数据库入门到大蛇尚硅谷宋红康老师笔记 高级篇 part 2
数据库·笔记·mysql
爱学习的小王!8 小时前
nvm安装、管理node多版本以及配置环境变量【保姆级教程】
经验分享·笔记·node.js·vue
陈志化8 小时前
JMeter----笔记
笔记·jmeter
HollowKnightZ8 小时前
论文阅读笔记:Gated CRF Loss for Weakly Supervised Semantic Image Segmentation
论文阅读·笔记
xzal129 小时前
青少年编程都有哪些比赛可以参加
笔记·青少年编程
StickToForever10 小时前
第4章 信息系统架构(二)
经验分享·笔记·学习·职场和发展
阿噜噜小栈10 小时前
Cursor 无限续杯
经验分享·笔记
omage12 小时前
cornerstone3D学习笔记-MPR
笔记·学习·vtk·dicom·mpr
Zhouqi_Hua14 小时前
LLM论文笔记 15: Transformers Can Achieve Length Generalization But Not Robustly
论文阅读·笔记·深度学习·语言模型·自然语言处理