ZKP16 Hardware Acceleration of ZKP

ZKP学习笔记

ZK-Learning MOOC课程笔记

Lecture 16: Hardware Acceleration of ZKP (Guest Lecturer: Kelly Olson)

  • The What and Why of Hardware Acceleration

    • Hardware acceleration is the use of dedicated hardware to accelerate an operation so that it runs faster and/or more efficiently.
    • Hardware acceleration can involve optimizing functions and code to use existing hardware (COTS) or it may involve the development of new hardware designed for a specific task.
      • COTS (commercially available off-the-shelf) hardware includes CPUs, GPUs, and FPGAS
      • Custom hardware is often referred to as an ASIC
    • Examples
  • Hardware acceleration for crytpo

  • Why HW acceleration for ZKP

    • ZK (and non-ZK) proof generation has high overheads relative to native computation
  • Goals of HW acceleration for ZKP

    • Throughput: increase the number of operations per system
    • Cost: reduce the cost of operation e.g. Bitcoin mining rigs are designed to reduce capital expenses ($/hash) and operational expenses (watts/hash)
    • Latency: reduce the time of an individual operation e.g. 2kBridges may want to reduce the proof generation time for faster finality
  • Key Computational Primitives of ZKP

    • Each proof system, and associated implementation will have slightly different computational requirements.

    • Across a variety of proof systems these are three of the most computationally expensive operations

      • Multiscalar Multiplication (MSM)
        • A 'dot product' of elliptic curve points and scalars

        • Easily paralledizable

        • Optimization

          • When performing a MSM off of the host device, the scalars and sometimes points must be moved to the accelerator. The available communication bandwidth limits the maximum possible performance of the accelerator.
      • Number Theoretic Transformation (NTT)
        • Common algorithms like Cooley-Tukey reduce complexity from O ( N 2 ) O(N^2) O(N2) to O ( N I o g N ) O(NIogN) O(NIogN)
        • Not Easily paralledizable
        • Furthermore, these elements must be kept in memory to be operated on, imposing high memory requirements
      • Arithmetic Hashes (e.g., Poseidon)
    • SNARK V.S. STARK

      • The MSM, NTT and Hashes take 2/3 or more time in the proving system
    • Foundational Primitive: Finite Field Arithmetic (especially ModMul)

  • Hardware Resources Required

    • Determining Computational Cost

    • Selecting the Right Hardware

      • Given that these workload are driven predominately by modular multiplication, we should look for platforms can perform a large number of multiplications, quickly and cheaply
      • Estimated HW performance can be evaluated by looking at # of hardware multipliers, size of hardware multipliers, and speed/frequency of each instruction
      • Examples
    • Two Key Components to HW Acceleration

      • 'HW friendly' Algorithm
      • Efficient Implementation
  • Limits of Acceleration

    • Acceleration Pitfalls

    • Production Examples: Filecoin

  • Current Status of Hardware Acceleration

  • Future Directions for Hardware Acceleration

相关推荐
不会代码的小猴3 小时前
Linux环境编程第六天笔记--system-V IPC
linux·笔记
乌恩大侠4 小时前
【笔记】USRP 5G 和 6G 参考架构
笔记·5g
biuyyyxxx4 小时前
Python自动化办公学习笔记(一) 工具安装&教程
笔记·python·学习·自动化
舟舟亢亢5 小时前
Java集合笔记总结
java·笔记
丝斯20115 小时前
AI学习笔记整理(66)——多模态大模型MOE-LLAVA
人工智能·笔记·学习
kida_yuan7 小时前
【Linux】运维实战笔记 — 我常用的方法与命令
linux·运维·笔记
laplace01237 小时前
Claude Skills 笔记整理
人工智能·笔记·agent·rag·skills
三块可乐两块冰7 小时前
【第二十八周】机器学习笔记二十九
笔记
血小板要健康7 小时前
Java基础常见面试题复习合集1
java·开发语言·经验分享·笔记·面试·学习方法
童话名剑8 小时前
情感分类与词嵌入除偏(吴恩达深度学习笔记)
笔记·深度学习·分类