【GEE】基于GEE-Landsat8数据集地表温度反演(LST热度计算)

老样子,最近在做生态方面的项目,然后需要分析城市的热岛效应,想了想还是用GEE计算比较简单,直接下载影像太麻烦了。所以在网上看看了资料,踩了踩坑终于是将代码写出来了。秉承着取之于民、用之于民的想法,今天给大家分享一下如何使用GEE的Landsat8数据集进行地表温度的反演。

踩坑1:网上大部分的资源都是C01数据集,但是GEE在2021年的时候就已经将Landsat8数据整合到C02数据集中了,所以直接用网上的代码可能会出现波段不存在的报错!

踩坑2:资源质量不一,有的用地表反射率产品,有的用大气产品导致代码复杂,不容易复现!

一、思路

Landsat8数据的L2级产品的热红外波段ST_B10就直接对应着地表温度,只需简单计算即可获取摄氏度。(问就是不知道,以前做的都是单床算法啥的计算NDVI进行反演)GEE官方给出了这个example所以就直接用了。

二、代码

记得将自己的研究区导进去,默认命名是table,所以导进去直接运行即可。

javascript 复制代码
var roi = table //感兴趣的区域信息
var style_set = {color:"red",fillColor:"00000000"}; //设置地图中要素的颜色和填充颜色
Map.addLayer(roi.style(style_set),{},"shape") //使用之前定义的样式集将roi添加到地图中。该地图层默认使用几何形状(例如多边形)来表示区域
Map.centerObject(roi,10) //将地图中心设置为roi对象,并设置缩放级别为10

//本示例演示了使用Landsat 8 Collection 2,Level 2的QA_PIXEL波段(CFMask)来屏蔽不需要的像素。

//定义函数maskL8sr,接受一个图像作为输入,并对图像进行处理
function maskL8sr(image) {
  // Bit 0 - Fill
  // Bit 1 - Dilated Cloud
  // Bit 2 - Cirrus
  // Bit 3 - Cloud
  // Bit 4 - Cloud Shadow
  var qaMask = image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 2)).eq(0);
  //从输入图像中选择QA_PIXEL波段,使用位运算和掩码来识别填充、云、云影等像素
  var saturationMask = image.select('QA_RADSAT').eq(0); //从输入图像中选择QA_RADSAT波段,并识别未饱和的像素。
  
  // 将缩放因子应用于适当的频带
  var opticalBands = image.select('SR_B.').multiply(0.0000275).add(-0.2);
  // 从输入图像中选择光学波段,并应用归一化处理。
  var thermalBands = image.select('ST_B.*').multiply(0.00341802).add(149.0);
  // 从输入图像中选择热红外波段,并应用归一化处理。

  // 用缩放的带替换原始带并应用掩码。
  return image.addBands(opticalBands, null, true)
      .addBands(thermalBands, null, true)
      .updateMask(qaMask)
      .updateMask(saturationMask);
}


// 将函数映射到一年的数据上
var collection = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')
                     .filterDate('2022-01-01', '2022-12-31')
                     .map(maskL8sr)
                     .median() //中值合成
                     .clip(roi); //裁剪

// Display the results.
// Map.setCenter(-4.52, 40.29, 7);  // Iberian Peninsula

// print(dataset)
var img = collection.select("ST_B10") //从处理后的图像集合中选择热红外波段('ST_B10')
var lst = img.expression(
    'B1-273.15',
    {
        B1:img.select('ST_B10'), 
    }); //对选择的热红外波段进行计算表达式操作
    
print("LST直方图", ui.Chart.image.histogram(lst, roi, 100, 258)) //打印直方图,显示热红外波段处理后的数据分布情况
print(lst) //打印热红外波段处理后的数据

Map.addLayer(lst, {'min':2,'max':49,'palette':["eff3ff","c6dbef","9ecae1","6baed6","4292c6","2171b5","084594",
"fff5f0","fee0d2","fcbba1","fc9272","fb6a4a","ef3b2c","cb181d","99000d"]}, 'lst')
// 将处理后的热红外波段数据添加到地图上,并设定显示范围和颜色映射

function exportImage(image, roi, fileName) {  
    Export.image.toDrive({  
       image: image,  
       description: "Landsat8"+fileName,  
       fileNamePrefix: fileName,  //文件命名
       folder: "Landsat 8",  //保存的文件夹
       scale: 30,  //分辨率
       region: roi,  //研究区
       maxPixels: 1e13,  //最大像元素
       crs: "EPSG:4326"  //设置投影
   });  
 }
exportImage(lst,roi,"lst")

三、效果图

我这里输出了一个温度直方图分布图,一个栅格数据。栅格数据的导出代码也写进去了。运行后直接到Tasks里面下载即可!

这个专栏开了之后也不知道怎么分享博文,感觉没什么好写的,不如直接放代码。但是有感觉光放代码有比较单调,很烦。等后期看看如何改进,大家有什么问题可以随时留言交流!

相关推荐
XINVRY-FPGA2 小时前
EP4CE30F23I7N Altera Cyclone IV E SRAM FPGA
嵌入式硬件·fpga开发·云计算·硬件工程·信息与通信·信号处理·fpga
boonya7 小时前
阿里云效一站式DevOps解决方案
阿里云·云计算·devops·阿里云效·一站式服务
方安乐7 小时前
超简单腾讯云免费部署vue项目
云计算·腾讯云
Akamai中国8 小时前
加速采用安全的企业级 Kubernetes 环境
人工智能·云计算·云服务·云存储
wanhengidc8 小时前
云手机如何进行数据备份
运维·服务器·科技·智能手机·云计算
云计算小黄同学8 小时前
【基于阿里云ACK】详细介绍k8s日志系统的设计与部署
阿里云·kubernetes·云计算
阿里云通信8 小时前
国内如何合规接入 WhatsApp Business API?阿里云作为 Meta Premier BSP 的完整技术指南
阿里云·云计算·whatsapp api·whatsapp bsp·whatsapp 服务商
翼龙云_cloud8 小时前
阿里云渠道商:连接无影云电脑时最常见的问题有哪些?
服务器·阿里云·云计算·电脑·玩游戏
weixin_3077791310 小时前
Jenkins GitHub插件1.45.0:深度集成与实践指南
运维·云原生·云计算·jenkins