论文阅读—— CEASC(cvpr2023)

arxiv:https://arxiv.org/abs/2303.14488

github:https://github.com/Cuogeihong/CEASC

为了进一步减轻SC中的信息损失,使训练过程更加稳定,我们在训练过程中除了稀疏卷积之外,还保持了正常的密集卷积,生成了在全输入特征图上卷积的特征图。然后,我们使用来通过将MSE损失优化为来增强稀疏特征图

相关推荐
9命怪猫几秒前
DeepSeek底层揭秘——微调
人工智能·深度学习·神经网络·ai·大模型
kcarly1 小时前
KTransformers如何通过内核级优化、多GPU并行策略和稀疏注意力等技术显著加速大语言模型的推理速度?
人工智能·语言模型·自然语言处理
MinIO官方账号3 小时前
使用 AIStor 和 OpenSearch 增强搜索功能
人工智能
江江江江江江江江江3 小时前
深度神经网络终极指南:从数学本质到工业级实现(附Keras版本代码)
人工智能·keras·dnn
Fansv5873 小时前
深度学习-2.机械学习基础
人工智能·经验分享·python·深度学习·算法·机器学习
小怪兽会微笑4 小时前
PyTorch Tensor 形状变化操作详解
人工智能·pytorch·python
Erekys4 小时前
视觉分析之边缘检测算法
人工智能·计算机视觉·音视频
livefan5 小时前
我国首条大型无人机城际低空物流航线成功首航
人工智能·无人机
唔皇万睡万万睡5 小时前
数字水印嵌入及提取系统——基于小波变换GUI
人工智能·计算机视觉
Jackilina_Stone5 小时前
【论文阅读笔记】知识蒸馏:一项调查 | CVPR 2021 | 近万字翻译+解释
论文阅读·人工智能·深度学习·蒸馏