论文阅读—— CEASC(cvpr2023)

arxiv:https://arxiv.org/abs/2303.14488

github:https://github.com/Cuogeihong/CEASC

为了进一步减轻SC中的信息损失,使训练过程更加稳定,我们在训练过程中除了稀疏卷积之外,还保持了正常的密集卷积,生成了在全输入特征图上卷积的特征图。然后,我们使用来通过将MSE损失优化为来增强稀疏特征图

相关推荐
无心水21 分钟前
【Python实战进阶】4、Python字典与集合深度解析
开发语言·人工智能·python·python字典·python集合·python实战进阶·python工业化实战进阶
励志成为糕手32 分钟前
循环神经网络(RNN):时序数据的深度学习模型
人工智能·rnn·深度学习·gru·lstm
前端开发工程师请求出战34 分钟前
Advanced RAG实战:评估闭环与持续优化体系
人工智能·全栈
Nturmoils34 分钟前
基于Rokid CXR-M SDK实现AR智能助手应用:让AI大模型走进AR眼镜
人工智能·aigc
java_logo1 小时前
LobeHub Docker 容器化部署指南
运维·人工智能·docker·ai·容器·ai编程·ai写作
清云逸仙1 小时前
AI Prompt应用实战:评论审核系统实现
人工智能·经验分享·ai·语言模型·prompt·ai编程
正宗咸豆花1 小时前
Prompt Minder:重塑 AI 时代的提示词工程基础设施
人工智能·prompt
清云逸仙2 小时前
使用AI(GPT-4)实现AI prompt 应用--自动审核评论系统
人工智能·经验分享·ai·语言模型·ai编程
Mintopia2 小时前
Claude Code CLI UI
人工智能·aigc·全栈
Mr.Winter`2 小时前
基于Proto3和单例模式的系统参数配置模块设计(附C++案例实现)
c++·人工智能·单例模式·机器人