聚类算法属于无监督学习,其中最常见的是均值聚类 ,scikit-learn
中,有两种常用的均值聚类算法:
一种是有名的K-means
(也就是K-均值)聚类算法,这个算法几乎是学习聚类必会提到的算法;
另一个是均值偏移 聚类,它与K-means
各有千秋,只是针对的应用场景不太一样,但是知名度远不如K-Means
。
本篇介绍如何在scikit-learn
中使用这两种算法。
1. 算法概述
1.1. K-Means
K-means
算法起源于1967年,由James MacQueen和J. B. Hartigan提出。
它的基本原理是是将n个点 划分为K个集群,使得每个点都属于离其最近的均值(中心点)对应的集群。
K-Means算法主要包含2个部分:
- 距离公式 :通常采用欧几里得距离来计算数据点与质心之间的距离
<math xmlns="http://www.w3.org/1998/Math/MathML"> d ( X i , C j ) = ∣ ∣ X i − C j ∣ ∣ 2 d(X_i, C_j) = ||X_i - C_j||^2 </math>d(Xi,Cj)=∣∣Xi−Cj∣∣2 其中, <math xmlns="http://www.w3.org/1998/Math/MathML"> X i X_i </math>Xi是数据点, <math xmlns="http://www.w3.org/1998/Math/MathML"> C j C_j </math>Cj是质心。
- 目标函数:目标是最小化所有数据点与所属簇的质心之间的距离平方和
<math xmlns="http://www.w3.org/1998/Math/MathML"> J = ∑ j = 1 k ∑ i = 1 N j ∣ ∣ X i − C j ∣ ∣ 2 J = \sum_{j=1}^k \sum_{i=1}^{N_j} ||X_i - C_j||^2 </math>J=∑j=1k∑i=1Nj∣∣Xi−Cj∣∣2 其中, <math xmlns="http://www.w3.org/1998/Math/MathML"> N j N_j </math>Nj表示第 <math xmlns="http://www.w3.org/1998/Math/MathML"> j j </math>j个簇中的样本数量。
1.2. 均值漂移
均值漂移 算法最早是由Fukunaga等人在1975年提出的。
它的基本原理是对每一个数据点,算法都会估算其周围点的密度梯度,然后沿着密度上升的方向移动该点,直至达到密度峰值。
均值漂移算法主要有3个步骤:
- 用核函数估计数据点的密度:常用的核函数比如高斯核,
<math xmlns="http://www.w3.org/1998/Math/MathML"> K ( x ) = exp ( − ∣ ∣ x ∣ ∣ 2 / ( 2 h 2 ) ) K(x) = \exp(-||x||^2 / (2h^2)) </math>K(x)=exp(−∣∣x∣∣2/(2h2)) 其中, <math xmlns="http://www.w3.org/1998/Math/MathML"> h h </math>h为带宽参数,控制核的宽度。
- 均值漂移向量:也就是对于每个数据点,计算其周围点的密度梯度
- 迭代更新:根据均值漂移向量,每个数据点会沿着密度上升的方向移动,更新自己的位置
2. 创建样本数据
利用scikit-learn
中的样本生成器,创建一些用于聚类的数据。
python
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
X, y = make_blobs(n_samples=1000, centers=5)
plt.scatter(X[:, 0], X[:, 1], marker="o", c=y, s=25)
plt.show()
生成了包含5个 类别的1000条样本数据。
3. 模型训练
首先,划分训练集和测试集。
python
from sklearn.model_selection import train_test_split
# 分割训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
按照8:2
的比例划分了训练集 和测试集。
3.1. K-Means
对于K-Means
算法来说,需要指定聚类的数目,通过观察数据,我们指定聚类的数目5
。
这里的样本数据比较简单,能够一下看出来,实际情况下并不会如此容易的知道道聚类的数目是多少,
常常需要多次的尝试,才能得到一个比较好的聚类数目,也就是K
的值。
基于上面的数据,我们设置5个簇,看看聚类之后的质心在训练集和测试集上的表现。
python
from sklearn.cluster import KMeans
# 定义
reg = KMeans(n_clusters=5, n_init="auto")
# 训练模型
reg.fit(X_train, y_train)
# 绘制质心
_, axes = plt.subplots(nrows=1, ncols=2, figsize=(10, 4))
markers = ["x", "o", "^", "s", "*"]
centers = reg.cluster_centers_
axes[0].scatter(X_train[:, 0], X_train[:, 1], marker="o", c=y_train, s=25)
axes[0].set_title("【训练集】的质心位置")
axes[1].scatter(X_test[:, 0], X_test[:, 1], marker="o", c=y_test, s=25)
axes[1].set_title("【测试集】的质心位置")
for idx, c in enumerate(centers):
axes[0].plot(c[0], c[1], markers[idx], markersize=10)
axes[1].plot(c[0], c[1], markers[idx], markersize=10)
plt.show()
3.2. 均值漂移
均值漂移聚类,事先是不用指定聚类的数目的,通过调整它的bandwidth
参数,
可以训练出拥有不同数目质心的模型。
下面,设置了bandwidth=5
,训练之后得到了拥有3个质心的模型。
python
from sklearn.cluster import MeanShift
# 定义
reg = MeanShift(cluster_all=False, bandwidth=5)
# 训练模型
reg.fit(X, y)
# 绘制质心
_, axes = plt.subplots(nrows=1, ncols=2, figsize=(10, 4))
markers = ["x", "o", "^", "s", "*"]
centers = reg.cluster_centers_
print(len(centers))
axes[0].scatter(X_train[:, 0], X_train[:, 1], marker="o", c=y_train, s=25)
axes[0].set_title("【训练集】的质心位置")
axes[1].scatter(X_test[:, 0], X_test[:, 1], marker="o", c=y_test, s=25)
axes[1].set_title("【测试集】的质心位置")
for idx, c in enumerate(centers):
axes[0].plot(c[0], c[1], markers[idx], markersize=10)
axes[1].plot(c[0], c[1], markers[idx], markersize=10)
plt.show()
它把左下角的3类 比较接近的样本数据点算作一类。
通过调整 bandwidth
参数,也可以得到和 K-Means 一样的结果,
有兴趣的话可以试试,大概设置 bandwidth=2
左右的时候,可以得到5个质心,与上面的K-Means算法的结果类似。
4. 总结
K-Means
和均值漂移聚类都是强大的聚类工具,各有其优缺点。
K-Means
的优势是简单、快速且易于实现,当数据集是密集的,且类别之间有明显的分离时,效果非常好;
不过,它需要预先设定簇 的数量k
,且对初始质心的选择敏感,所以,对于不是凸形状或者大小差别很大的簇,效果并不好。
而均值漂移聚类 的优势在于不需要 预先知道簇的数量 ,可以自适应地找到数据的"模式",对噪声和异常值也有很好的鲁棒性。
不过,与K-Means
相比,它需要选择合适的带宽参数,对高维数据可能不太有效,且计算复杂度较高。
最后,对于这两种均值聚类算法来说,选择哪种取决于数据的性质和应用的需求。