🤗 免费AI模型之旅——Transformers篇

🤗 1. 介绍

Transformers提供了很多在文本视觉音频上的数以千计的训练模型。Transformers由三个流行的深度学习库(Jax, PyTorch, TensorFlow)提供支持的预训练先进模型库了,用于自然语言处理(文本)计算机视觉(图像)、音频和语音处理。

文本类

文本分类信息提取你问我答摘要翻译文本生成等等,支持多种语言。

图像

图像分类对象检测和分割等等。

音频

语音识别音频分类等等。

结合模型

表格问答光学字符识别扫描文档提取信息视频分类视觉回答

🤗 2. 安装

查看python版本

python -V

使用安装两个Python库,分别是transformersdatasets

!pip install transformers datasets // !感叹符号表示在某些继承开发环境中 运行命令。也可以去掉。

transformers是一个用于自然语言处理(NLP)任务,如文本分类命名实体识别机器翻译等,提供了预训练的语言模型(如BERT、GPT)同时用于模型训练、评估和推理的工具和API的Python库。

datasets是一个用来访问和处理各种NLP(Natural Language Processing)数据集的Python库,它提供了一个统一的接口,可以轻松地下载、加载,以及预处理各种常见的NLP数据集。

安装深度学习库 Pytorch 和 TensorFlow

复制代码
pip install torch

pip install tensorflow

torch是一个广泛使用的深度学习框架,提供了用于构建和训练各种神经网络模型的工具和API,主要特点是动态计算图和易于使用的API。非常强大的学习框架工具。

tensorflow也是一个深度学习框架,由google开发的。用来构建和训练各种机器学习和深度学习的模型。

安装完成后,使用pip list查看开发环境第三方库上是否已经存在以上提到的几个库。

🤗 3. 使用

pipeline 管道

pipeline()的作用就是,跨不同模式使用。

类型 任务 描述 标识符
NLP(语言文本类) 情绪分析 分析一段文本是正能量和负能量 pipeline(task="sentiment-analysis")
NLP(语言文本类) 生成文本 根据一段提示生成文本 pipeline(task="text-generation")
NLP(语言文本类) 生成摘要 生成文档或文本的摘要 pipeline(task="ummarization")
视觉图像类 图像分类 给出一张图罗列出图片中物品 pipeline(task="image-segmentation")
视觉图像类 对象检测 预测照片中对象的位置和类目 pipeline(task="object-detection")
视觉图像类 图片转标题 为给定图像生成标题 pipeline(task="image-to-text")
音频类 音频分类 给音频场景分类 pipeline(task="audio-classification")
音频分类 音频转字幕 音频素材转字幕 pipeline(task="automatic-speech-recognition")

终端测试

情绪分析

打开Terminal终端:

输入python,进入python环境,

然后创建一个pipeline()实例:

python 复制代码
>>> from transformers import pipeline

>>> classifier = pipeline("sentiment-analysis")

接着输入我们想要分析的文本即可:

单文本

多文本

传数组,然后遍历输出结果

目标检测

大家可以自行去模型中心去看看去测试一番,接下来介绍的是DETR进行目标检测。在这个模型当中,我们可以得到照片图像中检测到的对象预测列表,里面包含着物品名称和位置以及可信度。

html

css

js

效果

🤗 4. 写在末尾

Hugging Face 上的Transformers有很多实现,这里就不一一举例了,其中包括一些pipeline工具的任务处理,以及构建trainer微调预训练模型,感兴趣的小伙伴可以自行去官网查看一些案例。AI在我们生活方方面面都有非常多的应用,人工智能正在也一直会深度参与世界的发展跟走向...

☎️ 希望对大家有所帮助,如有错误,望不吝赐教,欢迎评论区留言互相学习。感谢阅读!

相关推荐
Jay Kay40 分钟前
TensorFlow源码深度阅读指南
人工智能·python·tensorflow
FF-Studio44 分钟前
【硬核数学 · LLM篇】3.1 Transformer之心:自注意力机制的线性代数解构《从零构建机器学习、深度学习到LLM的数学认知》
人工智能·pytorch·深度学习·线性代数·机器学习·数学建模·transformer
会的全对٩(ˊᗜˋ*)و1 小时前
【数据挖掘】数据挖掘综合案例—银行精准营销
人工智能·经验分享·python·数据挖掘
云渚钓月梦未杳1 小时前
深度学习03 人工神经网络ANN
人工智能·深度学习
在美的苦命程序员1 小时前
中文语境下的视频生成革命:百度 MuseSteamer 的“产品级落地”启示录
人工智能·百度
kngines1 小时前
【字节跳动】数据挖掘面试题0007:Kmeans原理,何时停止迭代
人工智能·数据挖掘·kmeans
Kali_071 小时前
使用 Mathematical_Expression 从零开始实现数学题目的作答小游戏【可复制代码】
java·人工智能·免费
贾全1 小时前
第十章:HIL-SERL 真实机器人训练实战
人工智能·深度学习·算法·机器学习·机器人
每日摸鱼大王1 小时前
互联网摸鱼日报(2025-07-01)
人工智能
GIS小天2 小时前
AI+预测3D新模型百十个定位预测+胆码预测+去和尾2025年7月4日第128弹
人工智能·算法·机器学习·彩票