【物联网】DMA传输原理与实现详解(超详细)

DMA(Direct Memory Access,直接内存访问)是一种计算机数据传输方式,允许外围设备直接访问系统内存,而无需CPU的干预。

文章目录

    • [Part 1: DMA的工作原理](#Part 1: DMA的工作原理 "#Part_1_DMA_5")
    • [Part 2: DMA数据组成](#Part 2: DMA数据组成 "#Part_2_DMA_33")
    • [Part 3: DMA传输过程的实现](#Part 3: DMA传输过程的实现 "#Part_3_DMA_53")
    • [Part 4: DMA中断处理和性能优化](#Part 4: DMA中断处理和性能优化 "#Part_4_DMA_127")
    • [Part 5: STM32实现DMA](#Part 5: STM32实现DMA "#Part_5_STM32DMA_154")

Part 1: DMA的工作原理

DMA(Direct Memory Access,直接内存访问)是一种计算机数据传输方式,允许外围设备直接访问系统内存,而无需CPU的干预。下面详细介绍DMA的工作原理:

配置阶段:

  1. 配置源地址(Source Address) :通过指定源地址,DMA可以知道需要传输数据的起始位置。
  2. 配置目标地址(Destination Address) :指定目标地址,将数据传输到系统内存中的相应位置。
  3. 配置数据长度(Data Length) :DMA需要知道需要传输的数据长度,以便正确地读取和写入数据。
  4. 配置控制信息(Control Information) :例如传输模式、中断使能等参数,用于指定传输的具体配置。

数据传输阶段:

  1. 外设发起传输请求:外围设备(如网络接口卡、硬盘控制器)向DMA控制器发起传输请求。
  2. DMA控制器响应请求:DMA控制器接收到传输请求后,暂停CPU的访问,并通过请求信号(如DMA请求信号)获取对系统总线的控制权。
  3. 读取数据:DMA控制器从外设读取数据,并存储在内部缓冲区中。
  4. 数据传输:DMA控制器将数据从内部缓冲区传输到系统内存中的目标地址。
  5. 传输完成通知:当数据传输完成后,DMA控制器会释放对系统总线的控制权,并发出传输完成的中断信号,通知CPU。
  6. CPU处理中断:CPU接收到传输完成的中断信号后,会执行相应的中断处理程序。

Part 2: DMA数据组成

DMA传输涉及的数据主要有以下几种组成:

  1. 源地址(Source Address) :源地址表示数据传输的起始地址,即外设设备中数据缓冲区的地址。DMA将从这个地址开始读取数据。
  2. 目标地址(Destination Address) :目标地址表示数据传输的目的地址,即系统内存中的指定地址。DMA将数据传输到这个地址。
  3. 数据长度(Data Length) :数据长度表示需要传输的数据大小。它可以以字节、字或者其他单位进行表示。
  4. 控制信息(Control Information) :控制信息包括传输模式、中断使能等参数。在传输过程中,DMA根据这些参数来控制数据的传输行为。

此外,还有一些额外的参数和寄存器与DMA相关,用于配置和控制DMA的操作,例如:

  1. DMA通道选择(DMA Channel Selection) :在具有多个DMA通道的系统中,选择要使用的DMA通道。
  2. DMA传输模式(DMA Transfer Mode) :指定DMA传输的模式,如单次传输模式、循环传输模式等。
  3. DMA中断使能(DMA Interrupt Enable) :用于控制DMA传输完成时是否产生中断。

Part 3: DMA传输过程的实现

DMA的传输过程涉及多个步骤,包括启动DMA、请求传输、数据读取和写入等操作。

下面是DMA传输过程的一个简单实现示例:

  1. 配置DMA参数
    在开始DMA传输之前,需要先配置DMA相关的参数,如源地址、目标地址、数据长度和控制信息等。这些参数通常通过设置相应的寄存器来实现。
c++ 复制代码
// 配置DMA
void configureDMA(uint32_t sourceAddr, uint32_t destAddr, uint32_t dataLength) {
    // 配置源地址和目标地址
    writeDMARegister(SOURCE_ADDRESS_REG, sourceAddr);
    writeDMARegister(DESTINATION_ADDRESS_REG, destAddr);
    
    // 配置数据长度
    writeDMARegister(DATA_LENGTH_REG, dataLength);
    
    // 配置控制信息,如传输模式、中断使能等
    writeDMARegister(CONTROL_INFO_REG, controlInfo);
}
  1. 启动DMA传输
    配置完成后,通过设置相应的使能寄存器,启动DMA传输。
c++ 复制代码
// 启动DMA传输
void startDMA() {
    // 设置DMA使能位
    writeDMARegister(ENABLE_REG, 1);
    
    // 发送传输请求
    sendDMARequest();
}
  1. 请求传输
    外设设备发出DMA请求,请求DMA控制权,开始数据传输过程。DMA控制器收到传输请求后,暂停CPU的访问,并通过请求信号(如DMA请求信号)获取对系统总线的控制权。
c++ 复制代码
// 发送DMA传输请求
void sendDMARequest() {
    // 发送DMA请求信号给DMA控制器
    setDMARequestSignal();
}
  1. 数据读取和写入
    DMA控制器根据配置的参数,从外设设备中读取数据,并将其写入系统内存中的目标地址。
c++ 复制代码
// 读取数据并写入内存
void transferData() {
    // 从外设读取数据
    uint32_t data = readDataFromPeripheral();
    
    // 写入内存
    writeDataToMemory(data);
}
  1. 传输完成通知
    当数据传输完成后,DMA控制器会释放对系统总线的控制权,并发送传输完成的中断信号,通知CPU。
c++ 复制代码
// DMA中断处理函数
void handleDMAInterrupt() {
    // 处理传输完成的中断信号
    // ...
}

Part 4: DMA中断处理和性能优化

DMA中断处理:

在DMA传输完成时,DMA控制器可以触发一个中断,通知CPU传输已完成。CPU可以相应地执行中断处理程序,进行必要的操作。

  1. 中断使能设置:
    在配置DMA参数时,通过设置相应的控制信息,可以选择是否使能DMA传输完成中断。如果使能了中断,DMA传输完成时会产生中断请求信号。否则,传输完成后不会触发中断。
  2. 中断处理程序:
    在CPU侧,需要编写中断处理程序来处理DMA传输完成中断。中断处理程序负责执行相应的操作,如处理传输完成的数据、清除中断标志等。

DMA性能优化:

为了提高DMA传输的效率和性能,可以采取以下优化技术:

  1. 数据对齐(Data Alignment):
    尽可能地对齐数据可以提高DMA的传输效率。许多硬件平台在DMA传输时对数据对齐有限制,所以确保数据在传输过程中的对齐是重要的。
  2. 数据块传输(Block Transfer):
    DMA支持以块为单位的数据传输,逐次传输多个数据块,并在传输完成后给出一个中断通知。这种方式比每次传输一个数据更高效,减少了中断的开销和系统总线访问的次数。
  3. 通道优先级(Channel Priority):
    在具有多个DMA通道的系统中,可以通过设置不同的通道优先级,来决定DMA通道之间的数据传输优先级。这样可以在多个外设设备同时请求传输时,对优先级较高的设备进行优先处理。
  4. 多重缓冲区(Double Buffering):
    使用多个缓冲区来存储数据可以提高DMA传输效率。当DMA从一个缓冲区传输数据时,CPU可以同时向另一个缓冲区写入新的数据,从而实现并行操作。

Part 5: STM32实现DMA

基于标准库

示例代码:

c 复制代码
#include "stm32f10x.h"

#define BUFFER_SIZE 100

uint32_t sourceBuffer[BUFFER_SIZE];
uint32_t destinationBuffer[BUFFER_SIZE];

void DMA_Configuration(void) {
    DMA_InitTypeDef DMA_InitStructure;
    
    RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);
    
    DMA_DeInit(DMA1_Channel1);
    DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)&(ADC1->DR);
    DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)destinationBuffer;
    DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;
    DMA_InitStructure.DMA_BufferSize = BUFFER_SIZE;
    DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
    DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
    DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;
    DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
    DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
    DMA_InitStructure.DMA_Priority = DMA_Priority_High;
    DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
    
    DMA_Init(DMA1_Channel1, &DMA_InitStructure);
    
    DMA_Cmd(DMA1_Channel1, ENABLE);
}

int main() {
    // 初始化源缓冲区
    for (int i = 0; i < BUFFER_SIZE; i++) {
        sourceBuffer[i] = i;
    }
    
    // 配置DMA
    DMA_Configuration();
    
    while (1) {
        // 等待DMA传输完成
        while (!DMA_GetFlagStatus(DMA1_FLAG_TC1));
        
        // 处理传输完成的数据
        for (int i = 0; i < BUFFER_SIZE; i++) {
            // 处理destinationBuffer中的数据
            // ...
        }
        
        // 清除DMA传输完成标志位
        DMA_ClearFlag(DMA1_FLAG_TC1);
    }
}

在这个示例代码中,首先通过DMA_Configuration函数进行DMA的配置。然后在主循环中等待DMA传输完成的标志位,处理传输完成的数据,并清除传输完成标志位。

基于HAL库

示例代码:

c 复制代码
#include "stm32f1xx_hal.h"

#define BUFFER_SIZE 100

DMA_HandleTypeDef hdma_adc1;

uint32_t sourceBuffer[BUFFER_SIZE];
uint32_t destinationBuffer[BUFFER_SIZE];

void DMA_Configuration(void) {
    __HAL_RCC_DMA1_CLK_ENABLE();
    
    hdma_adc1.Instance = DMA1_Channel1;
    hdma_adc1.Init.Direction = DMA_PERIPH_TO_MEMORY;
    hdma_adc1.Init.PeriphInc = DMA_PINC_DISABLE;
    hdma_adc1.Init.MemInc = DMA_MINC_ENABLE;
    hdma_adc1.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
    hdma_adc1.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;
    hdma_adc1.Init.Mode = DMA_CIRCULAR;
    hdma_adc1.Init.Priority = DMA_PRIORITY_HIGH;
    
    HAL_DMA_Init(&hdma_adc1);
    
    __HAL_LINKDMA(&hadc1, DMA_Handle, hdma_adc1);
    
    HAL_DMA_Start(&hdma_adc1, (uint32_t)&(ADC1->DR), (uint32_t)destinationBuffer, BUFFER_SIZE);
}

void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc) {
    // 处理传输完成的数据
    for (int i = 0; i < BUFFER_SIZE; i++) {
        // 处理destinationBuffer中的数据
        // ...
    }
}

int main() {
    // 初始化源缓冲区
    for (int i = 0; i < BUFFER_SIZE; i++) {
        sourceBuffer[i] = i;
    }
    
    // 配置DMA
    DMA_Configuration();
    
    // 启动ADC转换
    HAL_ADC_Start_DMA(&hadc1, (uint32_t*)sourceBuffer, BUFFER_SIZE);
    
    while (1) {
        // 主循环中不需要额外的处理
        
        // 在需要使用CPU的其他任务中加入适当的延时或等待DMA传输完成的标志位
        // ...
    }
}

这个示例使用了STM32Cube HAL库提供的HAL库函数进行DMA的配置和控制。在DMA_Configuration函数中,使用HAL_DMA_Init函数进行DMA的初始化,并且通过__HAL_LINKDMA宏将DMA与ADC关联起来。在HAL_ADC_ConvCpltCallback函数中,处理传输完成的数据。

相关推荐
浮梦终焉2 天前
_FYAW智能显示控制仪表的简单使用_串口通信
嵌入式·串口通信·fyaw
LunarCod2 天前
Linux驱动开发快速入门——字符设备驱动(直接操作寄存器&设备树版)
linux·驱动开发·设备树·嵌入式·c/c++·字符设备驱动
stone51952 天前
鸿蒙系统ubuntu开发环境搭建
c语言·ubuntu·华为·嵌入式·harmonyos
飞凌嵌入式2 天前
飞凌嵌入式旗下教育品牌ElfBoard与西安科技大学共建「科教融合基地」
嵌入式硬件·学习·嵌入式·飞凌嵌入式
飞凌嵌入式3 天前
飞凌嵌入式T113-i开发板RISC-V核的实时应用方案
人工智能·嵌入式硬件·嵌入式·risc-v·飞凌嵌入式
blessing。。3 天前
I2C学习
linux·单片机·嵌入式硬件·嵌入式
网易独家音乐人Mike Zhou3 天前
【卡尔曼滤波】数据预测Prediction观测器的理论推导及应用 C语言、Python实现(Kalman Filter)
c语言·python·单片机·物联网·算法·嵌入式·iot
jjyangyou5 天前
物联网核心安全系列——智能汽车安全防护的重要性
算法·嵌入式·产品经理·硬件·产品设计
FreakStudio5 天前
全网最适合入门的面向对象编程教程:59 Python并行与并发-并行与并发和线程与进程
python·单片机·嵌入式·面向对象·电子diy·电子计算机
憧憬一下6 天前
UART硬件介绍
arm开发·嵌入式硬件·串口·嵌入式·linux驱动开发