搭建神经网络(torch.nn的用法)

零零碎碎总结了一些torch框架里面nn模块的用法,尤其是关于搭建神经网络的

nn.ModuleList

nn.Module

nn.Sequential

nn.Linear

nn.Dropout

nn.Embedding

nn.DataParallel()

将模型封装起来,便于在多个gpu上并行计算,训练或者推理

nn.DataParallel 是一个用于并行计算的 PyTorch 模型包装器。它可以将模型复制到多个GPU设备上,并自动将输入数据划分为多个子批次(mini-batches),分配给不同的GPU进行计算,并且能够有效地将梯度聚合回主模型。

nn.DataParallel 是一个用于在多个GPU上并行执行模型训练或推断的PyTorch模型包装器。下面是 nn.DataParallel 的一般用法:

python 复制代码
1.导入必要的库:

import torch
import torch.nn as nn


2.定义模型:

class MyModel(nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, 3)
        # 定义其他层和操作

    def forward(self, x):
        # 定义前向传播逻辑
        return out


3.创建模型对象:

model = MyModel()


4.指定要使用的GPU设备:

device_ids = [0, 1, 2]  # 指定要使用的GPU设备的索引


5.使用 nn.DataParallel 包装模型对象:

model = nn.DataParallel(model, device_ids=device_ids)

以上代码将模型对象 model 包装在 nn.DataParallel 中,使用 device_ids 指定要使用的GPU设备的索引列表。

现在,model 将被自动复制到指定的GPU设备上,并且计算会在每个设备上同时进行。输入数据会被自动划分为多个子批次,并分配给不同的GPU设备。在计算梯度时,梯度将被聚合回主模型,并进行参数更新。

请注意,使用 nn.DataParallel 时,一些操作(如 model.parameters() 和 model.to(device))可能需要进行适当的调整。具体调整取决于您的代码结构和需求。

使用 nn.DataParallel 可以方便地利用多个GPU设备并行计算,从而加快模型训练和推断的速度,并提高深度学习任务的效率和扩展性。

相关推荐
木头左5 分钟前
高频交易中的LSTM模型实时数据流输入的设计与实现
人工智能·rnn·lstm
_Li.7 分钟前
机器学习-非度量方法
人工智能·机器学习·支持向量机
xiaoxiaoxiaolll8 分钟前
《Advanced Photonics Research》浙大团队提出混合逆向设计方法,实现太赫兹三通道模分/波分同时解复用
人工智能
paopao_wu9 分钟前
深度学习2:理解感知机
人工智能·深度学习
郑州光合科技余经理9 分钟前
海外国际版同城服务系统开发:PHP技术栈
java·大数据·开发语言·前端·人工智能·架构·php
跨境卫士苏苏10 分钟前
突围新品广告泥潭:亚马逊广告底层逻辑大重构
大数据·人工智能·算法·重构·亚马逊·防关联
杭州泽沃电子科技有限公司11 分钟前
在线监测:让燃气轮机在能源转型中更可靠、更高效
人工智能·发电·智能运维
诸葛务农16 分钟前
类脑智能技术与系统:能源和材料技术的进步与限制
人工智能·材料工程
其美杰布-富贵-李17 分钟前
tsai 完整训练流程实践指南
python·深度学习·时序学习·fastai
ekprada20 分钟前
Day 44 预训练模型与迁移学习
人工智能