搭建神经网络(torch.nn的用法)

零零碎碎总结了一些torch框架里面nn模块的用法,尤其是关于搭建神经网络的

nn.ModuleList

nn.Module

nn.Sequential

nn.Linear

nn.Dropout

nn.Embedding

nn.DataParallel()

将模型封装起来,便于在多个gpu上并行计算,训练或者推理

nn.DataParallel 是一个用于并行计算的 PyTorch 模型包装器。它可以将模型复制到多个GPU设备上,并自动将输入数据划分为多个子批次(mini-batches),分配给不同的GPU进行计算,并且能够有效地将梯度聚合回主模型。

nn.DataParallel 是一个用于在多个GPU上并行执行模型训练或推断的PyTorch模型包装器。下面是 nn.DataParallel 的一般用法:

python 复制代码
1.导入必要的库:

import torch
import torch.nn as nn


2.定义模型:

class MyModel(nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, 3)
        # 定义其他层和操作

    def forward(self, x):
        # 定义前向传播逻辑
        return out


3.创建模型对象:

model = MyModel()


4.指定要使用的GPU设备:

device_ids = [0, 1, 2]  # 指定要使用的GPU设备的索引


5.使用 nn.DataParallel 包装模型对象:

model = nn.DataParallel(model, device_ids=device_ids)

以上代码将模型对象 model 包装在 nn.DataParallel 中,使用 device_ids 指定要使用的GPU设备的索引列表。

现在,model 将被自动复制到指定的GPU设备上,并且计算会在每个设备上同时进行。输入数据会被自动划分为多个子批次,并分配给不同的GPU设备。在计算梯度时,梯度将被聚合回主模型,并进行参数更新。

请注意,使用 nn.DataParallel 时,一些操作(如 model.parameters() 和 model.to(device))可能需要进行适当的调整。具体调整取决于您的代码结构和需求。

使用 nn.DataParallel 可以方便地利用多个GPU设备并行计算,从而加快模型训练和推断的速度,并提高深度学习任务的效率和扩展性。

相关推荐
算家计算21 分钟前
字节开源代码模型——Seed-Coder 本地部署教程,模型自驱动数据筛选,让每行代码都精准落位!
人工智能·开源
伪_装28 分钟前
大语言模型(LLM)面试问题集
人工智能·语言模型·自然语言处理
gs8014035 分钟前
Tavily 技术详解:为大模型提供实时搜索增强的利器
人工智能·rag
music&movie1 小时前
算法工程师认知水平要求总结
人工智能·算法
狂小虎1 小时前
亲测解决self.transform is not exist
python·深度学习
量子位1 小时前
苹果炮轰推理模型全是假思考!4 个游戏戳破神话,o3/DeepSeek 高难度全崩溃
人工智能·deepseek
黑鹿0221 小时前
机器学习基础(四) 决策树
人工智能·决策树·机器学习
Fxrain1 小时前
[深度学习]搭建开发平台及Tensor基础
人工智能·深度学习
szxinmai主板定制专家2 小时前
【飞腾AI加固服务器】全国产化飞腾+昇腾310+PCIe Switch的AI大模型服务器解决方案
运维·服务器·arm开发·人工智能·fpga开发
laocui12 小时前
Σ∆ 数字滤波
人工智能·算法