【6.824】分布式lab1 mapReduce

Paper main idea

复制代码
Figure 1 shows the overall flow of a MapReduce operation in our implementation. When the user program calls the MapReduce function, the following sequence of actions occurs (the numbered labels in Figure 1 correspond to the numbers in the list below): 

1. The MapReduce library in the user program first splits the input files into M pieces of typically 16 megabytes to 64 megabytes (MB) per piece (controllable by the user via an optional parameter). It then starts up many copies of the program on a cluster of machines. 

2. One of the copies of the program is special -- the master. The rest are workers that are assigned work by the master. There are M map tasks and R reduce tasks to assign. The master picks idle workers and assigns each one a map task or a reduce task. 

3. A worker who is assigned a map task reads the contents of the corresponding input split. It parses key/value pairs out of the input data and passes each pair to the user-defined Map function. The intermediate key/value pairs produced by the Map function are buffered in memory

4. Periodically, the buffered pairs are written to local disk, partitioned into R regions by the partitioning function. The locations of these buffered pairs on the local disk are passed back to the master, who is responsible for forwarding these locations to the reduce workers. 

5. When a reduce worker is notified by the master about these locations, it uses remote procedure calls to read the buffered data from the local disks of the map workers. When a reduce worker has read all intermediate data, it sorts it by the intermediate keys so that all occurrences of the same key are grouped together. The sorting is needed because typically many different keys map to the same reduce task. If the amount of intermediate data is too large to fit in memory, an external sort is used. 

6. The reduce worker iterates over the sorted intermediate data and for each unique intermediate key encountered, it passes the key and the corresponding set of intermediate values to the user's Reduce function. The output of the Reduce function is appended to a final output file for this reduce partition

7. When all map tasks and reduce tasks have been completed, the master wakes up the user program. At this point, the MapReduce call in the user program returns back to the user code.

some ideas

Task Synchronous:

all map task should be earlier than reduce task!

some map task may wait seconds, so should first all map tasks done before reduce.

Lock:

workers run parallel, should add mutex to filelist when

Error Return:

workers may run some error, such as rpc sock connect and can not open files. When these errors happend, should return Error to master, other than just stop itself.

Heartbeat:

master should ask workers whether they are alive.

Implementation method:

  1. Set a new scheduled task and ask every 2 minutes.
  2. Every time a new worker requests a new task, add a judgment when rotating all tasks to assign tasks to the worker. If a task status is not Finish and times out, the task fails
  3. Write in the Done() method and continuously rotate to ensure that all tasks are completed. And take the opportunity to determine if there is a task timeout.

Performance comparison: 1>2>3

Judging by frequency. The execution frequency of 3 is too high, constantly executing and discussing the sequence.

status of task and worker

worker:

  • Finish: worker finish task X
  • Ready: worker ask for a new task
  • Wrong: worker meet some problems
  • Close: worker will be closed when master ask worker to close

task:

  • Run: some worker is running on this task
  • Done: this task is finished
  • (empty string): task not be allocated yet

lab test:

pass all the test!

相关推荐
更深兼春远5 小时前
flink+clinkhouse安装部署
大数据·clickhouse·flink
Monly215 小时前
RabbitMQ:数据隔离
分布式·rabbitmq
专注API从业者8 小时前
Python + 淘宝 API 开发:自动化采集商品数据的完整流程
大数据·运维·前端·数据挖掘·自动化
萧鼎9 小时前
Python pyzmq 库详解:从入门到高性能分布式通信
开发语言·分布式·python
媒体人8889 小时前
GEO 优化专家孟庆涛:技术破壁者重构 AI 时代搜索逻辑
大数据·人工智能
最初的↘那颗心10 小时前
Flink Stream API 源码走读 - print()
java·大数据·hadoop·flink·实时计算
君不见,青丝成雪11 小时前
hadoop技术栈(九)Hbase替代方案
大数据·hadoop·hbase
晴天彩虹雨11 小时前
存算分离与云原生:数据平台的新基石
大数据·hadoop·云原生·spark
朗迪锋11 小时前
数字孪生 :提高制造生产力的智能方法
大数据·人工智能·制造
卡拉叽里呱啦12 小时前
缓存-变更事件捕捉、更新策略、本地缓存和热key问题
分布式·后端·缓存