聊聊魔塔社区MGeo模型的部署与运行

从现今与今后的发展来看,单一的业务不再仅仅依靠于传统的技术开发,而是应该结合AI模型来应用、实践。只有这样,才能更数智化,更高效化,更贴合时代的发展。

魔塔 社区就类似国外的Hugging Face,是一个模型即服务的运行平台。在这个平台上运行着很多的大模型示例,网站直接提供了试运行的环境,也可以下载代码到本地部署运行或是在阿里云的PAI平台运行。

pytorch环境搭建

我是跟着 Pytorch-Gpu环境配置 博文一步一步搭建起来的。唯一不同的是,我不是基于Anaconda虚拟环境搭建,而是直接在本地环境部署pytorch与CUDA。

开着西部世界的VPN,下载pytorch与CUDA会快一些,在本地下载好了pytorch的whl文件后,直接在下载目录中打开cmd窗口,使用pip install xxxx.whl安装pytorch即可。

RaNER 模型搭建与运行

进入魔塔官网,找到MGeo模型,首先必须要下载modelscope包。在MGeo的模型介绍中,以及有详细的命令说明,如下:

shell 复制代码
# GPU版本
conda create -n py37testmaas python=3.7
pip install cryptography==3.4.8  tensorflow-gpu==1.15.5  torch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0
pip install "modelscope[nlp]" -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html

但是对于我来说,并没有用到conda虚拟环境,所以我只是运行了最后的pip命令,如下:

shell 复制代码
pip install "modelscope[nlp]" -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html

命令输出内容如下:

最好是开着VPN执行命令,否则会很慢。下载完后有一个报错,可以忽略,最后我成功安装的组件有:

如此,便完成了modelscope包的安装。然后拷贝示例代码在本地运行即可,示例代码如下:

shell 复制代码
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks

task = Tasks.token_classification
model = 'damo/mgeo_geographic_elements_tagging_chinese_base'
inputs = '浙江省杭州市余杭区阿里巴巴西溪园区'
pipeline_ins = pipeline(
    task=task, model=model)
print(pipeline_ins(input=inputs))
# 输出
# {'output': [{'type': 'prov', 'start': 0, 'end': 3, 'span': '浙江省'}, {'type': 'city', 'start': 3, 'end': 6, 'span': '杭州市'}, {'type': 'district', 'start': 6, 'end': 9, 'span': '余杭区'}, {'type': 'poi', 'start': 9, 'end': 17, 'span': '阿里巴巴西溪园区'}]}

运行过程中,也会有一些提示,还是很有意思的,可以看看.

最后的结果也是正常的输出了,对于输出结果的解释,我就不多说,可以看API文档解释。我换成其它地址继续测试:

总结

最后说一下自己的实际感受。首先这个MGEO的AI模型,在我上家公司我主导做的项目就用到了,当时是花钱在阿里云的 地址标准化 产品上购买使用,用于在实际的项目中根据客户输入的地址提取省市区并再次输入到目标网站。当时一开始想的是自己找开源的库来实现,后来发现有点难,因为客户输入的辨识度太低,可能性太多,而且我们不能规范客户的输入(主要是历史数据太多)。因此当时找了好多方案,最后发现阿里云有这个支持,就花钱购买调用解决问题。

从现在来看,其实整个模型与应用完全可以自己搭建部署起来,作为基础设施层,省钱又能自我管控,而且还能二次开发,毕竟现在以及前几年做AI算法的人还是不少的(当时我们公司也有少数做AI相关的人,自己现在也算是个半吊子水平,看得懂也能改一点),唉,总的来说还是当时的能力限制了,还是得多学多思考多了解,尤其是现在AI模型的普遍性与高速发展,程序猿学习成本与门槛降低很多很多。

相关推荐
佛州小李哥3 小时前
通过亚马逊云科技Bedrock打造自定义AI智能体Agent(上)
人工智能·科技·ai·语言模型·云计算·aws·亚马逊云科技
BugNest10 小时前
计算机视觉和图像处理
图像处理·人工智能·机器学习·计算机视觉·ai
大道戏10 小时前
如何本地部署DeepSeek
windows·ai·deepseek
产品媛Gloria Deng11 小时前
分享| RL-GPT 框架通过慢agent和快agent结合提高AI解决复杂任务的能力-Arxiv
人工智能·gpt·ai·agent·ai智能体
Elastic 中国社区官方博客17 小时前
使用 Ollama 和 Kibana 在本地为 RAG 测试 DeepSeek R1
大数据·数据库·人工智能·elasticsearch·ai·云原生·全文检索
Hoper.J1 天前
DeepSeek API 的获取与对话示例
ai·api·deepseek
仇辉攻防2 天前
【AI】DeepSeek 概念/影响/使用/部署
人工智能·网络安全·ai·语言模型·chatgpt·ddos
TGITCIC2 天前
DeepSeek r1本地安装全指南
人工智能·ai·aigc·ollama·deep seek·开源ai·本地安装大模型
灰灰老师2 天前
数据分析系列--②RapidMiner导入数据和存储过程
机器学习·ai·数据挖掘·数据分析·rapidminer
灰灰老师2 天前
数据分析系列--⑥RapidMiner构建决策树(泰坦尼克号案例含数据)
机器学习·ai·数据挖掘·数据分析·rapidminer