使用迁移学习在线校准深度学习模型

使用迁移学习在线校准深度学习模型

本文参考的是2023年发表于Engineering Applications of Artificial Intelligence, EAAI的Deep Gaussian mixture adaptive network for robust soft sensor modeling with a closed-loop calibration mechanism

1. 动机

概念漂移导致历史训练数据和在线部署数据之间的分布失配问题,这会恶化深度学习模型的性能。不幸的是,现有的深度学习模型很少有处理在线漂移的校准机制。

2. 方法

  • 提出高斯混合条件变分自动编码器(GMCVAE)
  • 使用无标签数据对齐边缘分布、使用有标签数据对齐条件分布
  • 预训练-微调的方式进行在线部、闭环校准
  • 深度学习离线训练,迁移学习在线校准

3. 优势

  • 多模态数据域适应
  • 半监督迁移学习
  • 高效校准能力
  • 模型长期有效性保证
相关推荐
聚客AI32 分钟前
🌟大模型为什么产生幻觉?预训练到推理的漏洞全揭秘
人工智能·llm·掘金·日新计划
Juchecar38 分钟前
一文讲清 nn.Sequential 等容器类
人工智能
阿里云云原生1 小时前
如何快速看懂「祖传项目」?Qoder 强势推出新利器
人工智能
美团技术团队1 小时前
LongCat-Flash:如何使用 SGLang 部署美团 Agentic 模型
人工智能·算法
程序员小袁3 小时前
基于C-MTEB/CMedQAv2-rerankingv的Qwen3-1.7b模型微调-demo
人工智能
飞哥数智坊4 小时前
AI 编程一年多,我终于明白:比技巧更重要的,是熟练度
人工智能·ai编程
新智元4 小时前
收手吧 GPT-5-Codex,外面全是 AI 编程智能体!
人工智能·openai
IT_陈寒4 小时前
Java 性能优化:5个被低估的JVM参数让你的应用吞吐量提升50%
前端·人工智能·后端
阿里云云原生5 小时前
阿里云基础设施 AI Tech Day AI 原生,智构未来——AI 原生架构与企业实践专场
人工智能
Memene摸鱼日报6 小时前
「Memene 摸鱼日报 2025.9.16」OpenAI 推出 GPT-5-Codex 编程模型,xAI 发布 Grok 4 Fast
人工智能·aigc