使用迁移学习在线校准深度学习模型

使用迁移学习在线校准深度学习模型

本文参考的是2023年发表于Engineering Applications of Artificial Intelligence, EAAI的Deep Gaussian mixture adaptive network for robust soft sensor modeling with a closed-loop calibration mechanism

1. 动机

概念漂移导致历史训练数据和在线部署数据之间的分布失配问题,这会恶化深度学习模型的性能。不幸的是,现有的深度学习模型很少有处理在线漂移的校准机制。

2. 方法

  • 提出高斯混合条件变分自动编码器(GMCVAE)
  • 使用无标签数据对齐边缘分布、使用有标签数据对齐条件分布
  • 预训练-微调的方式进行在线部、闭环校准
  • 深度学习离线训练,迁移学习在线校准

3. 优势

  • 多模态数据域适应
  • 半监督迁移学习
  • 高效校准能力
  • 模型长期有效性保证
相关推荐
buttonupAI4 小时前
今日Reddit各AI板块高价值讨论精选(2025-12-20)
人工智能
2501_904876484 小时前
2003-2021年上市公司人工智能的采纳程度测算数据(含原始数据+计算结果)
人工智能
竣雄5 小时前
计算机视觉:原理、技术与未来展望
人工智能·计算机视觉
救救孩子把5 小时前
44-机器学习与大模型开发数学教程-4-6 大数定律与中心极限定理
人工智能·机器学习
Rabbit_QL5 小时前
【LLM评价指标】从概率到直觉:理解语言模型的困惑度
人工智能·语言模型·自然语言处理
呆萌很5 小时前
HSV颜色空间过滤
人工智能
roman_日积跬步-终至千里6 小时前
【人工智能导论】02-搜索-高级搜索策略探索篇:从约束满足到博弈搜索
java·前端·人工智能
FL16238631296 小时前
[C#][winform]基于yolov11的淡水鱼种类检测识别系统C#源码+onnx模型+评估指标曲线+精美GUI界面
人工智能·yolo·目标跟踪
爱笑的眼睛116 小时前
从 Seq2Seq 到 Transformer++:深度解构与自构建现代机器翻译核心组件
java·人工智能·python·ai
小润nature6 小时前
AI时代对编程技能学习方式的根本变化(1)
人工智能