Flink SQL -- CheckPoint

1、开启CheckPoint

checkpoint可以定时将flink任务的状态持久化到hdfs中,任务执行失败重启可以保证中间结果不丢失

sql 复制代码
# 修改flink配置文件
vim flink-conf.yaml

# checkppint 间隔时间
execution.checkpointing.interval: 1min
# 任务手动取消时保存checkpoint
execution.checkpointing.externalized-checkpoint-retention: RETAIN_ON_CANCELLATION
# 同时允许1个checkpoint执行
execution.checkpointing.max-concurrent-checkpoints: 1
execution.checkpointing.min-pause: 0
# 数据处理的语义
execution.checkpointing.mode: EXACTLY_ONCE
# checkpoint超时时间
execution.checkpointing.timeout: 10min
execution.checkpointing.tolerable-failed-checkpoints: 0
execution.checkpointing.unaligned: false
# 状态后端(保存状态的位置,hashmap:内存)
state.backend: hashmap
# checkpoint路径
state.checkpoints.dir: hdfs://master:9000/flink/checkpoint
2、编写一个Flnik SQL 脚本:
sql 复制代码
vim word_count.sql
sql 复制代码
-- 实时从kafka中读取单词,统计单词的数量,将结果保存到mysql中

-- 1、创建source表
CREATE TABLE words (
    word STRING
) WITH (
  'connector' = 'kafka',
  'topic' = 'words', -- 数据的topic
  'properties.bootstrap.servers' = 'master:9092,node1:9092,node2:9092', -- broker 列表
  'properties.group.id' = 'testGroup', -- 消费者组
  'scan.startup.mode' = 'earliest-offset', -- 读取数据的位置earliest-offset latest-offset
  'format' = 'csv' -- 读取数据的格式
);

-- 2、创建sink表
CREATE TABLE word_count (
    word STRING,
    num BIGINT,
    PRIMARY KEY (word) NOT ENFORCED -- 主键
) WITH (
    'connector' = 'jdbc',
    'url' = 'jdbc:mysql://master:3306/student',
    'table-name' = 'word_count', -- 需要手动到mysql中创建表
    'username' ='root',
    'password' ='123456'
);

-- 3、编写sql处理数据将结果保存到sink表中
insert into word_count
select 
word,
count(1) as num
from
words
group by word;
3、使用sq-client.sh -f 启动脚本
sql 复制代码
sql-client.sh -f word_count.sql
4、当任务失败的时候再重新启动任务:
sql 复制代码
-- 1、获取checkpoint的路径
/file/checkpoint/47ee348d8c9edadadfc770cf7de8e7ee/chk-23

-- 2、再sql脚本中增加参数,增加到sql脚本的insert into 的前面
-- 指定任务会的checkpoint的地址
SET'execution.savepoint.path'='hdfs://master:9000/file/checkpoint/47ee348d8c9edadadfc770cf7de8e7ee/chk-23';

-- 3、启动sql任务
sql-client.sh -f word_count.sql
相关推荐
jonyleek31 分钟前
「JVS更新日志」低代码、企业会议、智能BI、智能排产2.26更新说明
java·大数据·低代码·数据分析·软件需求
kngines1 小时前
【实战 ES】实战 Elasticsearch:快速上手与深度实践-1.3.1单节点安装(Docker与手动部署)
大数据·elasticsearch·docker
小稻草打打打1 小时前
金融项目管理:合规性与风险管理的实战指南
大数据·金融
霍小毛4 小时前
Hive 与 TiDB 在大数据解析场景中的对比分析
大数据·hive·tidb
人类群星闪耀时4 小时前
Apache Flink:实时数据流处理的终极武器
struts·flink·apache
后季暖4 小时前
kafka stream对比flink
分布式·flink·kafka
知初~11 小时前
Spark内存并行计算框架
大数据·分布式·spark
2403_8751809512 小时前
AI数字人开发,引领科技新潮流
java·大数据·数据结构·人工智能·科技·前端框架
百事不可口y12 小时前
【产品小白】怎么量化用户体验呢
大数据·人工智能·产品运营·产品经理·用户运营·内容运营
十二零七12 小时前
掌握 ElasticSearch 精准查询:Term Query 与 Filter 详解
大数据·elasticsearch·搜索引擎