科研学习|科研软件——有序多分类Logistic回归的SPSS教程!

一、问题与数据

研究者想调查人们对"本国税收过高"的赞同程度:Strongly Disagree------非常不同意,用"0"表示;Disagree------不同意,用"1"表示;Agree--同意,用"2"表示;Strongly Agree--非常同意,用"3"表示。
另外,研究者也调查了一些其它情况,包括:是否是"雇主"(biz_owner:Yes------是,用"0"表示;No------否,用"1"表示)、年龄(age)和党派(politics:Lib------党派1,用"1"表示;Con------党派2,用"2"表示;Lab------党派3,用"3"表示)。部分数据如下图:

二、对问题的分析

使用有序Logistic进行回归分析时,需要考虑4个假设。

  • 假设1:因变量唯一,且为有序多分类变量,如城市综合竞争力等级可以分为高、中、低;某病的治疗效果分为痊愈、有效、无效等。
  • 假设2:存在一个或多个自变量,可为连续、有序多分类或无序分类变量。
  • 假设3:自变量之间无多重共线性。
  • 假设4:模型满足"比例优势"假设。意思是无论因变量的分割点在什么位置,模型中各个自变量对因变量的影响不变,也就是自变量对因变量的回归系数与分割点无关。

有序多分类的Logistic回归原理是将因变量的多个分类依次分割为多个二元的Logistic回归,例如本例中因变量"本国的税收过高"的赞同程度有4个等级,分析时拆分为三个二元Logistic回归,分别为(0 vs 1+2+3) 、(0+1 vs 2+3)、(0+1+2 vs 3),均是较低级与较高级对比。
在有序多分类Logistic回归中,假设几个二元Logistic回归中,自变量的系数相等,仅常数项不等,结果也只输出一组自变量的系数。因此,有序多分类的Logistic回归模型,必须对自变量系数相等的假设(即"比例优势"假设)进行检验(又称平行线检验)。如果不满足该假设,则考虑使用无序多分类Logistic回归。

三、前期数据处理

对假设进行验证前,我们需要将分类变量设置成哑变量。

1. 为什么要设计哑变量

若直接将分类变量纳入Logistic回归方程,则软件会将分类变量按连续变量处理。例如,如果把性别按"1"------男、"2"------女进行编码,然后直接把性别纳入方程,方程会认为"女"是"男"的2倍。为了解决这个问题,需要用一系列的二分类变量"是"或"否"来表示原始的分类变量,这些新的二分类变量被称为"哑变量"。

在SPSS软件的二项Logistic回归模型中,将分类变量选入categorical,软件会自动设置一系列的哑变量。由于验证假设3(自变量之间无多重共线性)需要通过线性回归实现,而在线性回归中,就需要手动设置哑变量。因此,这里需要先手动设置哑变量。

2. 设置哑变量的思路

哑变量的数目是分类变量类别数减一。本例中,党派1、党派2和党派3的原始编码为1、2和3。设置哑变量时,需要对党派1和党派2进行重新编码。

建立新变量Lib(党派1),若调查对象选了党派1,则Lib编为"1",代表是;若未选党派1,则Lib编为"0",代表否。同样,建立新变量Con(党派2),将是否选党派2编为"1"或"0"。此时,若既未选党派1,又未选党派2,则两个新变量Lib和Con的编码都为"0",代表党派3。此时,党派3在模型中是参考类别(Reference)。

3. 在SPSS中设置哑变量

**(1)**首先,先创建新变量"Con",在主菜单下选择Transform→Recode into Different Variables... ,如下图:

(2) 在Recode into Different Variables对话框中,将politics选入右侧Numeric Variable-->Output Variable下,在右侧Output Variable中填写"Con"。点击Change→Old and New Values。

(3) 出现Recode into Different Variables: Old and New Values对话框,在左侧的Old Value下的Value中填入2,在右侧的New Value下的Value中填入1,点击Add。

(4) 将其它值变为"0":左侧点击All other values,在右侧Value中填入"0",点击Add→Continue。

(5) 如果数据中有缺失值,点击左侧System-missing,右侧点击System-missing→Add,保持缺失值:

设置得到的结果如下图:

本例中没有缺失值,可省略这一步。

(6) 继续创建新变量"Lib",与以上步骤相似。两个变量创建完成后,点击变量视图,可以看到在最右侧已经生成了两个新变量"Con"和"Lib",如下图:

四、对假设的判断

假设1-2都是对研究设计的假设,需要研究者根据研究设计进行判断,所以这里主要对数据的假设3-4进行检验。

1. 检验假设3:自变量之间无多重共线性

(1) 在主菜单点击Analyze→Regression→Linear...

(2) 将tax_too_high选入Dependent,将biz_owner、age、Con、Lib选入Independent(s)。

(3) 点击Statistics,出现Linear Regression:Statistics对话框,点击Collinearity diagnostics→Continue→OK。

结果如下图:

如果容忍度(Tolerance)小于0.1或方差膨胀因子(VIF)大于10,则表示有共线性存在。
本例中,容忍度均远大于0.1,方差膨胀因子均小于10,所以不存在多重共线性。如果数据存在多重共线性,则需要用复杂的方法进行处理,其中最简单的方法是剔除引起共线性的因素之一,剔除哪一个因素可以基于理论依据。

2. 检验假设4:模型满足"比例优势"假设

"比例优势"假设可以在后面结果部分的"平行线检验"中看到。

五、SPSS操作

SPSS中,可以通过两个过程实现有序Logistic回归。分别是Analyze → Regression → Ordinal...和Analyze → Generalized Linear Models → Generalized Linear Models...。
其中,Analyze → Regression → Ordinal模块,可以检验 "比例优势"假设,但无法给出OR值和95%CI。而Analyze → Generalized Linear Models → Generalized Linear Models模块可以给出OR值和95%CI,但无法检验"比例优势"假设。

这里,我们主要介绍Analyze → Regression → Ordinal过程。

(1) 在主菜单点击Analyze→Regression→Ordinal...

相关推荐
武子康2 天前
大数据-210 数据挖掘 机器学习理论 - 逻辑回归 scikit-learn 实现 penalty solver
大数据·人工智能·python·机器学习·数据挖掘·逻辑回归·scikit-learn
spssau2 天前
13类高频数据分析方法分类汇总
大数据·数据分析·论文·spss·spssau
逆境中自愈6 天前
普通人要学会利用优势赚钱,而不是盲目跟风
职场和发展·逻辑回归·生活
goTsHgo7 天前
分类算法——逻辑回归 详解
分类·数据挖掘·逻辑回归
hawk2014bj8 天前
机器学习之逻辑回归
人工智能·机器学习·逻辑回归
只因在人海中多看了你一眼9 天前
使用 BERT 和逻辑回归进行文本分类及示例验证
分类·bert·逻辑回归
T0uken10 天前
【机器学习】逻辑回归
人工智能·机器学习·逻辑回归
spssau11 天前
卡方检验方法概述与类型——四格表和R*C表卡方检验案例
数据分析·spss·卡方检验·spssau
lu_rong_qq12 天前
AI 自学 Lesson3 - 逻辑回归(LR)
人工智能·算法·逻辑回归·1024程序员节
TangGeeA15 天前
逻辑回归公式推导-详细版
人工智能·算法·机器学习·逻辑回归·1024程序员节