mapreduce--单词分析

WCDriver

java 复制代码
package com.atguigu.mr.wordcount;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

/*
    程序的入口
    1.创建job实例并允许
 */
public class WCDriver {
    public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {
//        创建job实例
        Configuration conf=new Configuration();
        Job job=Job.getInstance(conf);

//        给job赋值
//        关联本程序的jar 运行必须写
        job.setJarByClass(WCDriver.class);
//        设置mapper reduce类
        job.setMapperClass(WCMapper.class);
        job.setReducerClass(WCReducer.class);
//        设置mapper输出的key value的类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(LongWritable.class);
//        设置最终输出的key value类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(LongWritable.class);

/*
设置输出路径
windows:
FileInputFormat.setInputPaths(job,new Path("//"));
FileInputFormat.setOutputPaths(job,new Path("//"));


 */
        FileInputFormat.setInputPaths(job,new Path(args[0]));
        FileOutputFormat.setOutputPath(job,new Path(args[1]));
//        FileInputFormat.setInputPaths(job,new Path("F:\\input"));
//        FileOutputFormat.setOutputPath(job,new Path("F:\\aa\\output"));
//        运行job
        boolean b=job.waitForCompletion(true);
        System.out.println("b===="+ b);



    }
}

WCMapper

java 复制代码
package com.atguigu.mr.wordcount;

import org.apache.commons.net.imap.IMAP;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.xbill.DNS.LOCRecord;

import java.io.IOException;

/*
    mapper阶段会运行MapTask -会调用Mappper类
      在该类中实现业务逻辑
 */
public class WCMapper extends Mapper<LongWritable,Text,Text, LongWritable> {

    private Text outKey=new Text();
    private LongWritable outValue=new LongWritable();

    /**
     *
     * @param key 读取数据时的偏移量
     * @param value 读取的数据
     * @param context 上下文
     * @throws IOException
     * @throws InterruptedException
     */

    @Override
    protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, LongWritable>.Context context) throws IOException, InterruptedException {
//        super.map(key, value, context);
//        1.将数据进行切割



//        1.1将Text转换成string---为了使用String API
        String line=value.toString();
//        1.2对数据切割
        String[] words =line.split("");

//        2.遍历数据
        for (String word:words){
//            3.封装key,value
//            创建key,value对象


//            赋值
            outKey.set(word);
            outValue.set(1);
//            4.将 key,value写进去
            context.write(outKey,outValue);


        }
//
//

    }
}

WCReduce

java 复制代码
package com.atguigu.mr.wordcount;

import org.apache.hadoop.classification.InterfaceAudience;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

/*
    reduce阶段会运行reduceTask -会调用reducer类
      在该类中实现业务逻辑
 */
public class WCReducer extends Reducer <Text,LongWritable,Text,LongWritable> {
    private LongWritable outValue=new LongWritable();
    /**
     *
     * @param key
     * @param values
     * @param context
     * @throws IOException
     * @throws InterruptedException
     */
    @Override
    protected void reduce(Text key, Iterable<LongWritable> values, Reducer<Text, LongWritable, Text, LongWritable>.Context context) throws IOException, InterruptedException {
//        super.reduce(key, values, context);
        //        super.reduce(key, values, context);
        long sum =0; //value的和
//    遍历所有的value
        for (LongWritable value : values){
            long v=value.get();
//            累加
            sum+=v;

        }
        outValue.set(sum);
        context.write(key,outValue);
    }
}
相关推荐
zhang98800001 小时前
储能领域大数据平台的设计中如何使用 Hadoop、Spark、Flink 等组件实现数据采集、清洗、存储及实时 / 离线计算,支持储能系统分析与预测
大数据·hadoop·spark
老蒋新思维1 小时前
存量竞争下的破局之道:品牌与IP的双引擎策略|创客匠人
大数据·网络·知识付费·创客匠人·知识变现
Lx3523 小时前
Hadoop日志分析实战:快速定位问题的技巧
大数据·hadoop
喂完待续5 小时前
【Tech Arch】Hive技术解析:大数据仓库的SQL桥梁
大数据·数据仓库·hive·hadoop·sql·apache
SelectDB6 小时前
5000+ 中大型企业首选的 Doris,在稳定性的提升上究竟花了多大的功夫?
大数据·数据库·apache
最初的↘那颗心6 小时前
Flink Stream API 源码走读 - window 和 sum
大数据·hadoop·flink·源码·实时计算·窗口函数
Yusei_05238 小时前
迅速掌握Git通用指令
大数据·git·elasticsearch
一只栖枝14 小时前
华为 HCIE 大数据认证中 Linux 命令行的运用及价值
大数据·linux·运维·华为·华为认证·hcie·it
喂完待续19 小时前
Apache Hudi:数据湖的实时革命
大数据·数据仓库·分布式·架构·apache·数据库架构
青云交19 小时前
Java 大视界 -- 基于 Java 的大数据可视化在城市交通拥堵治理与出行效率提升中的应用(398)
java·大数据·flink·大数据可视化·拥堵预测·城市交通治理·实时热力图