MapReduce 的 Shuffle 过程

MapReduce 的 Shuffle 过程指的是 MapTask 的后半程,以及ReduceTask的前半程,共同组成的。

从 MapTask 中的 map 方法结束,到 ReduceTask 中的 reduce 方法开始,这个中间的部分就是Shuffle。是MapReduce的核心,心脏。

map端:

**1、**map中的context.write方法,对外写出的时候,其实是写入到了一个环形缓冲区内(内存形式的),这个环形缓冲区大小是100M,可以通过参数设置。如果里面的数据大于80M,就开始溢写(从内存中将数据写入到磁盘上)。溢写的文件存放地址可以设置。

2、 在溢写过程中,环形缓冲区不会停止工作,是会利用剩余的20%继续存入环形缓冲区的。除非是环形缓冲区的内存满了,map任务就被阻塞了。

在溢写出来的文件中,是排过序的,排序规则:快速排序算法。在排序之前,会根据分区的算法,对数据进行分区。在内存中,先分区,在每一个分区中再排序,接着溢写到磁盘上的。

3、 溢写出来的小文件需要合并为一个大文件,因为每一个MapTask只能有一份数据。就将相同的分区文件合并,并且排序(此处是归并排序)。每次合并的时候是10个小文件合并为一个大文件,进行多次合并,最终每一个分区的文件只能有一份。

假如100个小文件,需要合并几次呢?

100 每10分合并一次,第一轮:100个文件合并为了10个文件,这10个文件又合并为一个大文件,总共合并了11次。

**4、**将内存中的数据,溢写到磁盘上,还可以指定是否需要压缩,以及压缩的算法是什么。

reduce端:

1、 reduce端根据不同的分区,拉取每个服务器上的相同的分区的数据。

reduce任务有少量复制线程,因此能够并行取得map输出。默认值是5个线程,但这个默认值可以修改,设置mapreduce.reduce.shuffle. parallelcopies 属性即可。

**2、**如果map上的数据非常的小,该数据会拉取到reduce端的内存中,如果数据量比较大,直接拉取到reduce端的硬盘上。

相关推荐
小新学习屋2 小时前
Spark从入门到熟悉(篇三)
大数据·分布式·spark
rui锐rui3 小时前
大数据学习2:HIve
大数据·hive·学习
G皮T3 小时前
【Elasticsearch】检索高亮
大数据·elasticsearch·搜索引擎·全文检索·kibana·检索·高亮
zskj_zhyl7 小时前
智慧养老丨从依赖式养老到自主式养老:如何重构晚年生活新范式
大数据·人工智能·物联网
哲科软件8 小时前
从“电话催维修“到“手机看进度“——售后服务系统开发如何重构客户体验
大数据·智能手机·重构
zzywxc7878 小时前
AI 正在深度重构软件开发的底层逻辑和全生命周期,从技术演进、流程重构和未来趋势三个维度进行系统性分析
java·大数据·开发语言·人工智能·spring
专注API从业者8 小时前
构建淘宝评论监控系统:API 接口开发与实时数据采集教程
大数据·前端·数据库·oracle
一瓣橙子9 小时前
缺少关键的 MapReduce 框架文件
大数据·mapreduce
永洪科技16 小时前
永洪科技荣获商业智能品牌影响力奖,全力打造”AI+决策”引擎
大数据·人工智能·科技·数据分析·数据可视化·bi
weixin_3077791317 小时前
Hive集群之间迁移的Linux Shell脚本
大数据·linux·hive·bash·迁移学习