MapReduce 的 Shuffle 过程

MapReduce 的 Shuffle 过程指的是 MapTask 的后半程,以及ReduceTask的前半程,共同组成的。

从 MapTask 中的 map 方法结束,到 ReduceTask 中的 reduce 方法开始,这个中间的部分就是Shuffle。是MapReduce的核心,心脏。

map端:

**1、**map中的context.write方法,对外写出的时候,其实是写入到了一个环形缓冲区内(内存形式的),这个环形缓冲区大小是100M,可以通过参数设置。如果里面的数据大于80M,就开始溢写(从内存中将数据写入到磁盘上)。溢写的文件存放地址可以设置。

2、 在溢写过程中,环形缓冲区不会停止工作,是会利用剩余的20%继续存入环形缓冲区的。除非是环形缓冲区的内存满了,map任务就被阻塞了。

在溢写出来的文件中,是排过序的,排序规则:快速排序算法。在排序之前,会根据分区的算法,对数据进行分区。在内存中,先分区,在每一个分区中再排序,接着溢写到磁盘上的。

3、 溢写出来的小文件需要合并为一个大文件,因为每一个MapTask只能有一份数据。就将相同的分区文件合并,并且排序(此处是归并排序)。每次合并的时候是10个小文件合并为一个大文件,进行多次合并,最终每一个分区的文件只能有一份。

假如100个小文件,需要合并几次呢?

100 每10分合并一次,第一轮:100个文件合并为了10个文件,这10个文件又合并为一个大文件,总共合并了11次。

**4、**将内存中的数据,溢写到磁盘上,还可以指定是否需要压缩,以及压缩的算法是什么。

reduce端:

1、 reduce端根据不同的分区,拉取每个服务器上的相同的分区的数据。

reduce任务有少量复制线程,因此能够并行取得map输出。默认值是5个线程,但这个默认值可以修改,设置mapreduce.reduce.shuffle. parallelcopies 属性即可。

**2、**如果map上的数据非常的小,该数据会拉取到reduce端的内存中,如果数据量比较大,直接拉取到reduce端的硬盘上。

相关推荐
易营宝6 小时前
多语言网站建设避坑指南:既要“数据同步”,又能“按市场个性化”,别踩这 5 个坑
大数据·人工智能
fanstuck6 小时前
从0到提交,如何用 ChatGPT 全流程参与建模比赛的
大数据·数学建模·语言模型·chatgpt·数据挖掘
春日见6 小时前
vscode代码无法跳转
大数据·人工智能·深度学习·elasticsearch·搜索引擎
萤丰信息7 小时前
AI 筑基・生态共荣:智慧园区的价值重构与未来新途
大数据·运维·人工智能·科技·智慧城市·智慧园区
冰糖猕猴桃10 小时前
【AI】把“大杂烩抽取”拆成多步推理:一个从单提示到多阶段管线的实践案例
大数据·人工智能·ai·提示词·多步推理
才盛智能科技11 小时前
K链通×才盛云:自助KTV品牌从0到1孵化超简单
大数据·人工智能·物联网·自助ktv系统·才盛云
广州赛远11 小时前
IRB2600-201.65特殊机器人防护服清洗工具详解与避坑指南
大数据·人工智能
川西胖墩墩11 小时前
垂直模型价值:专业领域超越通用模型的竞争
大数据·人工智能
Data_Journal12 小时前
如何使用 Python 解析 JSON 数据
大数据·开发语言·前端·数据库·人工智能·php
威胁猎人12 小时前
【黑产大数据】2025年全球KYC攻击风险研究报告
大数据·区块链