MapReduce 的 Shuffle 过程

MapReduce 的 Shuffle 过程指的是 MapTask 的后半程,以及ReduceTask的前半程,共同组成的。

从 MapTask 中的 map 方法结束,到 ReduceTask 中的 reduce 方法开始,这个中间的部分就是Shuffle。是MapReduce的核心,心脏。

map端:

**1、**map中的context.write方法,对外写出的时候,其实是写入到了一个环形缓冲区内(内存形式的),这个环形缓冲区大小是100M,可以通过参数设置。如果里面的数据大于80M,就开始溢写(从内存中将数据写入到磁盘上)。溢写的文件存放地址可以设置。

2、 在溢写过程中,环形缓冲区不会停止工作,是会利用剩余的20%继续存入环形缓冲区的。除非是环形缓冲区的内存满了,map任务就被阻塞了。

在溢写出来的文件中,是排过序的,排序规则:快速排序算法。在排序之前,会根据分区的算法,对数据进行分区。在内存中,先分区,在每一个分区中再排序,接着溢写到磁盘上的。

3、 溢写出来的小文件需要合并为一个大文件,因为每一个MapTask只能有一份数据。就将相同的分区文件合并,并且排序(此处是归并排序)。每次合并的时候是10个小文件合并为一个大文件,进行多次合并,最终每一个分区的文件只能有一份。

假如100个小文件,需要合并几次呢?

100 每10分合并一次,第一轮:100个文件合并为了10个文件,这10个文件又合并为一个大文件,总共合并了11次。

**4、**将内存中的数据,溢写到磁盘上,还可以指定是否需要压缩,以及压缩的算法是什么。

reduce端:

1、 reduce端根据不同的分区,拉取每个服务器上的相同的分区的数据。

reduce任务有少量复制线程,因此能够并行取得map输出。默认值是5个线程,但这个默认值可以修改,设置mapreduce.reduce.shuffle. parallelcopies 属性即可。

**2、**如果map上的数据非常的小,该数据会拉取到reduce端的内存中,如果数据量比较大,直接拉取到reduce端的硬盘上。

相关推荐
lix的小鱼29 分钟前
spark和Hadoop之间的对比和联系
大数据·hadoop·spark
Lalolander35 分钟前
装备制造企业选型:什么样的项目管理系统最合适?
大数据·制造·工程项目管理·装备制造·epc项目管理·项目成本管控·业财一体化
island13141 小时前
【git#4】分支管理 -- 知识补充
大数据·git·elasticsearch
LCHub低代码社区1 小时前
钧瓷产业原始创新的许昌共识:技术破壁·产业再造·生态重构(一)
大数据·人工智能·维格云·ai智能体·ai自动化·大禹智库·钧瓷码
晴天彩虹雨2 小时前
Flink 数据清洗与字段标准化最佳实践
大数据·数据仓库·flink
一个数据大开发2 小时前
解读《数据资产质量评估实施规则》:企业数据资产认证落地的关键指南
大数据·数据库·人工智能
TTBIGDATA3 小时前
如何将 Apache Hudi 接入 Ambari?完整部署与验证指南
大数据·hadoop·ambari·hudi·bigtop·湖仓·自定义组件集成
科技在线4 小时前
科技赋能建筑新未来:中建海龙模块化建筑产品入选中国建筑首批产业化推广产品
大数据·人工智能
24k小善5 小时前
Flink TaskManager详解
java·大数据·flink·云计算
时序数据说5 小时前
时序数据库IoTDB在航空航天领域的解决方案
大数据·数据库·时序数据库·iotdb