MapReduce 的 Shuffle 过程

MapReduce 的 Shuffle 过程指的是 MapTask 的后半程,以及ReduceTask的前半程,共同组成的。

从 MapTask 中的 map 方法结束,到 ReduceTask 中的 reduce 方法开始,这个中间的部分就是Shuffle。是MapReduce的核心,心脏。

map端:

**1、**map中的context.write方法,对外写出的时候,其实是写入到了一个环形缓冲区内(内存形式的),这个环形缓冲区大小是100M,可以通过参数设置。如果里面的数据大于80M,就开始溢写(从内存中将数据写入到磁盘上)。溢写的文件存放地址可以设置。

2、 在溢写过程中,环形缓冲区不会停止工作,是会利用剩余的20%继续存入环形缓冲区的。除非是环形缓冲区的内存满了,map任务就被阻塞了。

在溢写出来的文件中,是排过序的,排序规则:快速排序算法。在排序之前,会根据分区的算法,对数据进行分区。在内存中,先分区,在每一个分区中再排序,接着溢写到磁盘上的。

3、 溢写出来的小文件需要合并为一个大文件,因为每一个MapTask只能有一份数据。就将相同的分区文件合并,并且排序(此处是归并排序)。每次合并的时候是10个小文件合并为一个大文件,进行多次合并,最终每一个分区的文件只能有一份。

假如100个小文件,需要合并几次呢?

100 每10分合并一次,第一轮:100个文件合并为了10个文件,这10个文件又合并为一个大文件,总共合并了11次。

**4、**将内存中的数据,溢写到磁盘上,还可以指定是否需要压缩,以及压缩的算法是什么。

reduce端:

1、 reduce端根据不同的分区,拉取每个服务器上的相同的分区的数据。

reduce任务有少量复制线程,因此能够并行取得map输出。默认值是5个线程,但这个默认值可以修改,设置mapreduce.reduce.shuffle. parallelcopies 属性即可。

**2、**如果map上的数据非常的小,该数据会拉取到reduce端的内存中,如果数据量比较大,直接拉取到reduce端的硬盘上。

相关推荐
武子康3 分钟前
大数据-152 Apache Druid 集群模式 [下篇] 低内存集群实操:JVM/DirectMemory与启动脚本
大数据·后端·nosql
路人与大师35 分钟前
解密“精准劝阻”:基于大数据与AI的反诈骗智能体系统深度解析
大数据·人工智能
老蒋新思维40 分钟前
借刘润之智,在 IP+AI 时代构筑战略 “增长方舟”|创客匠人
大数据·网络·人工智能·网络协议·tcp/ip·创客匠人·知识变现
打码人的日常分享1 小时前
智慧楼宇资料合集,智慧城市智慧社区智慧园区
大数据·网络·人工智能
wangqiaowq2 小时前
FLINK CDC 的学习
大数据
欢聚赢销CRM2 小时前
从“各自为战“到“数据协同“:销采一体化CRM正在重构供应链竞争力
大数据·人工智能·重构·数据分析
云边有个稻草人2 小时前
大数据时代时序数据库选型指南:为何Apache IoTDB是最优解
大数据·时序数据库·apache iotdb
kuankeTech4 小时前
大豆进口管理新突破:外贸ERP软件全流程数字化解决方案
大数据·低代码·开源软件·软件开发·erp
数据皮皮侠9 小时前
区县政府税务数据分析能力建设DID(2007-2025)
大数据·数据库·人工智能·信息可视化·微信开放平台
大任视点12 小时前
新时代旅游职业教育系列教材编写研讨会成功举办
大数据