Hadoop---MapReduce(3)

MapTask工作机制

(1)Read阶段 :MapTask通过InputFormat获得的RecordReader,从输入InputSplit中解析出一个个key/value。

(2)Map阶段 :该节点主要是将解析出的key/value交给用户编写map()函数处理,并产生一系列新的key/value。

(3)Collect收集阶段 :在用户编写map()函数中,当数据处理完成后,一般会调用OutputCollector.collect()输出结果。在该函数内部,它会将生成的key/value分区(调用Partitioner),并写入一个环形内存缓冲区中。

(4)Spill阶段 :即"溢写",当环形缓冲区满后,MapReduce会将数据写到本地磁盘上,生成一个临时文件。需要注意的是,将数据写入本地磁盘之前,先要对数据进行一次本地排序,并在必要时对数据进行合并、压缩等操作。

溢写阶段详情:利用快速排序算法

(5)Merge阶段:当所有数据处理完成后,MapTask对所有临时文件进行一次合并,以确保最终只会生成一个数据文件。

Reduce-join案例

将左边两个表合并为右边的表

数据清洗(ETL)

在运行核心业务MapReduce程序之前,往往要先对数据进行清洗,清理掉不符合用户要求的数据。清理的过程往往只需要运行Mapper程序,不需要运行Reduce程序。
原始数据:

清洗后的数据

Hadoop数据压缩


Map端输出压缩

运行后不会产生.bzip

reduce端输出压缩
代码更改

输出结果

相关推荐
老蒋新思维4 小时前
创客匠人视角:智能体重构创始人 IP,知识变现从 “内容售卖” 到 “能力复制” 的革命
大数据·网络·人工智能·tcp/ip·创始人ip·创客匠人·知识变现
笨蛋少年派5 小时前
Flume数据采集工具简介
大数据
梦里不知身是客115 小时前
spark中如何调节Executor的堆外内存
大数据·javascript·spark
小C8066 小时前
【Starrocks + Hive 】BitMap + 物化视图 实战记录
大数据
西格电力科技7 小时前
面向工业用户的绿电直连架构适配技术:高可靠与高弹性的双重设计
大数据·服务器·人工智能·架构·能源
beijingliushao9 小时前
105-Spark之Standalone HA环境搭建过程
大数据·spark
五阿哥永琪9 小时前
Git 开发常用命令速查手册
大数据·git·elasticsearch
数字会议深科技9 小时前
深科技 | 高端会议室效率升级指南:无纸化会议系统的演进与价值
大数据·人工智能·会议系统·无纸化·会议系统品牌·综合型系统集成商·会议室
容智信息10 小时前
容智Report Agent智能体驱动财务自动化,从核算迈向价值创造
大数据·运维·人工智能·自然语言处理·自动化·政务