Hadoop---MapReduce(3)

MapTask工作机制

(1)Read阶段 :MapTask通过InputFormat获得的RecordReader,从输入InputSplit中解析出一个个key/value。

(2)Map阶段 :该节点主要是将解析出的key/value交给用户编写map()函数处理,并产生一系列新的key/value。

(3)Collect收集阶段 :在用户编写map()函数中,当数据处理完成后,一般会调用OutputCollector.collect()输出结果。在该函数内部,它会将生成的key/value分区(调用Partitioner),并写入一个环形内存缓冲区中。

(4)Spill阶段 :即"溢写",当环形缓冲区满后,MapReduce会将数据写到本地磁盘上,生成一个临时文件。需要注意的是,将数据写入本地磁盘之前,先要对数据进行一次本地排序,并在必要时对数据进行合并、压缩等操作。

溢写阶段详情:利用快速排序算法

(5)Merge阶段:当所有数据处理完成后,MapTask对所有临时文件进行一次合并,以确保最终只会生成一个数据文件。

Reduce-join案例

将左边两个表合并为右边的表

数据清洗(ETL)

在运行核心业务MapReduce程序之前,往往要先对数据进行清洗,清理掉不符合用户要求的数据。清理的过程往往只需要运行Mapper程序,不需要运行Reduce程序。
原始数据:

清洗后的数据

Hadoop数据压缩


Map端输出压缩

运行后不会产生.bzip

reduce端输出压缩
代码更改

输出结果

相关推荐
会编程的李较瘦17 分钟前
【期末考试总结】spark课程知识点
大数据·单例模式·spark
Code Slacker17 分钟前
第八届传智杯AI云计算大数据开发挑战赛练习题库(三)
大数据·人工智能·云计算·竞赛
无代码专家17 分钟前
无代码驱动行业数字化转型:从痛点突破到效能重构
大数据·低代码·制造
拓端研究室32 分钟前
2025医疗人工智能报告:AI应用、IVD市场、健康科技|附240+份报告PDF、数据、可视化模板汇总下载
大数据·人工智能·物联网
天远数科37 分钟前
Node.js全栈开发:深度集成天远贷前风险报告接口打造风控中台
大数据·node.js
Data_agent40 分钟前
微店商品列表API接口指南
大数据·数据库·python
Vic1010141 分钟前
PostgreSQL 中序列(bigserial 和手动序列)的使用与注意事项
java·大数据·数据库·postgresql
武汉唯众智创43 分钟前
应用型大数据实训室实验教学方案:一份基于开源技术的完整实训指南
大数据·开源·大数据实训室·开源技术·大数据实验室
武子康43 分钟前
大数据-203 scikit-learn 决策树剪枝参数:max_depth/min_samples_leaf 到 min_impurity_decrease
大数据·后端·机器学习