Hadoop---MapReduce(3)

MapTask工作机制

(1)Read阶段 :MapTask通过InputFormat获得的RecordReader,从输入InputSplit中解析出一个个key/value。

(2)Map阶段 :该节点主要是将解析出的key/value交给用户编写map()函数处理,并产生一系列新的key/value。

(3)Collect收集阶段 :在用户编写map()函数中,当数据处理完成后,一般会调用OutputCollector.collect()输出结果。在该函数内部,它会将生成的key/value分区(调用Partitioner),并写入一个环形内存缓冲区中。

(4)Spill阶段 :即"溢写",当环形缓冲区满后,MapReduce会将数据写到本地磁盘上,生成一个临时文件。需要注意的是,将数据写入本地磁盘之前,先要对数据进行一次本地排序,并在必要时对数据进行合并、压缩等操作。

溢写阶段详情:利用快速排序算法

(5)Merge阶段:当所有数据处理完成后,MapTask对所有临时文件进行一次合并,以确保最终只会生成一个数据文件。

Reduce-join案例

将左边两个表合并为右边的表

数据清洗(ETL)

在运行核心业务MapReduce程序之前,往往要先对数据进行清洗,清理掉不符合用户要求的数据。清理的过程往往只需要运行Mapper程序,不需要运行Reduce程序。
原始数据:

清洗后的数据

Hadoop数据压缩


Map端输出压缩

运行后不会产生.bzip

reduce端输出压缩
代码更改

输出结果

相关推荐
DolphinScheduler社区1 小时前
Apache DolphinScheduler + OceanBase,搭建分布式大数据调度平台的实践
大数据
时差9532 小时前
MapReduce 的 Shuffle 过程
大数据·mapreduce
数新网络3 小时前
《深入浅出Apache Spark》系列②:Spark SQL原理精髓全解析
大数据·sql·spark
windy1a3 小时前
【c知道】Hadoop工作原理。
hadoop
昨天今天明天好多天8 小时前
【数据仓库】
大数据
油头少年_w9 小时前
大数据导论及分布式存储HadoopHDFS入门
大数据·hadoop·hdfs
Elastic 中国社区官方博客10 小时前
释放专利力量:Patently 如何利用向量搜索和 NLP 简化协作
大数据·数据库·人工智能·elasticsearch·搜索引擎·自然语言处理
力姆泰克10 小时前
看电动缸是如何提高农机的自动化水平
大数据·运维·服务器·数据库·人工智能·自动化·1024程序员节
力姆泰克10 小时前
力姆泰克电动缸助力农业机械装备,提高农机的自动化水平
大数据·服务器·数据库·人工智能·1024程序员节