Hadoop---MapReduce(3)

MapTask工作机制

(1)Read阶段 :MapTask通过InputFormat获得的RecordReader,从输入InputSplit中解析出一个个key/value。

(2)Map阶段 :该节点主要是将解析出的key/value交给用户编写map()函数处理,并产生一系列新的key/value。

(3)Collect收集阶段 :在用户编写map()函数中,当数据处理完成后,一般会调用OutputCollector.collect()输出结果。在该函数内部,它会将生成的key/value分区(调用Partitioner),并写入一个环形内存缓冲区中。

(4)Spill阶段 :即"溢写",当环形缓冲区满后,MapReduce会将数据写到本地磁盘上,生成一个临时文件。需要注意的是,将数据写入本地磁盘之前,先要对数据进行一次本地排序,并在必要时对数据进行合并、压缩等操作。

溢写阶段详情:利用快速排序算法

(5)Merge阶段:当所有数据处理完成后,MapTask对所有临时文件进行一次合并,以确保最终只会生成一个数据文件。

Reduce-join案例

将左边两个表合并为右边的表

数据清洗(ETL)

在运行核心业务MapReduce程序之前,往往要先对数据进行清洗,清理掉不符合用户要求的数据。清理的过程往往只需要运行Mapper程序,不需要运行Reduce程序。
原始数据:

清洗后的数据

Hadoop数据压缩


Map端输出压缩

运行后不会产生.bzip

reduce端输出压缩
代码更改

输出结果

相关推荐
aigcapi33 分钟前
[深度观察] RAG 架构重塑流量分发:2025 年 GEO 优化技术路径与头部服务商选型指南
大数据·人工智能·架构
山峰哥44 分钟前
SQL调优核心战法——索引失效场景与Explain深度解析
大数据·汇编·数据库·sql·编辑器·深度优先
hqyjzsb3 小时前
从爱好到专业:AI初学者如何跨越CAIE认证的理想与现实鸿沟
大数据·c语言·人工智能·信息可视化·职场和发展·excel·业界资讯
袋鼠云数栈3 小时前
企业数据资产管理核心框架:L1-L5分层架构解析
大数据·人工智能·架构
zxsz_com_cn4 小时前
设备预测性维护怎么做?预测性维护案例详解
大数据·人工智能
G皮T4 小时前
【Elasticsearch】查询性能调优(四):计数的精确性探讨
大数据·elasticsearch·搜索引擎·全文检索·es·性能·opensearch
十月南城4 小时前
ES性能与可用性——分片、副本、路由与聚合的调度逻辑与成本
大数据·elasticsearch·搜索引擎
阿坤带你走近大数据5 小时前
大数据行业中,什么是拉链表?具体怎么做?
大数据
数字化顾问5 小时前
(100页PPT)未来工厂大数据应用专题建设解决方案(附下载方式)
大数据
tiannian12206 小时前
如何选择适合企业的RFID系统解决方案?
大数据·人工智能