Jetson orin部署大模型示例教程

一、LLM介绍

LLM指的是Large Language Model(大型语言模型),是一类基于深度学习的自然语言处理技术,其主要目的是让机器能够更好地理解和生成人类的自然语言文本,如文章、对话、搜索等。

教程 - text-generation-webui

通过在 NVIDIA Jetson 上使用 oobabooga 的 text-generaton-webui 运行 LLM 与本地 AI 助手进行交互!

所需条件:

  1. 以下 Jetson 之一:

    Jetson AGX Orin 64GB Jetson AGX Orin (32GB) Jetson Orin Nano Orin (8GB)⚠️1

  2. 运行以下 JetPack.5x 之一

    JetPack 5.1.2 (L4T, r35.4.1) JetPack 5.1.1 (L4T r35.3.1) JetPack 5.1 (L4T r35.2.1)

  3. 足够的存储空间(最好使用 NVMe SSD)。

    • 6.2GB对于容器映像
    • 模型空间

使用 和 script 自动拉取或构建兼容的容器映像:run.sh``autotag

复制代码
`cd jetson-containers
./run.sh $(./autotag text-generation-webui)
`

容器有一个默认的运行命令 (),它将自动启动 Web 服务器,如下所示:CMD

复制代码
`cd /opt/text-generation-webui && python3 server.py \
  --model-dir=/data/models/text-generation-webui \
  --chat \
  --listen
`

打开浏览器并访问 .http://<IP_ADDRESS>:7860

在 Web UI 上下载模型

有关下载模型的说明,请参阅 oobabooga 文档 - 从 Web UI 中或使用 download-model.py

复制代码
./run.sh --workdir=/opt/text-generation-webui $(./autotag text-generation-webui) /bin/bash -c \
  'python3 download-model.py --output=/data/models/text-generation-webui TheBloke/Llama-2-7b-Chat-GPTQ'

GGUF 型号

目前使用最快的 oobabooga 模型加载器是具有 4 位量化 GGUF 模型的 llama.cpp

您可以下载特定量化的单个模型文件,例如 .输入文件名并点击下载 按钮。*.Q4_K_M.bin

量化 内存 (MB)
TheBloke/Llama-2-7b-Chat-GGUF llama-2-7b-chat.Q4_K_M.gguf 5,268
TheBloke/Llama-2-13B-chat-GGUF llama-2-13b-chat.Q4_K_M.gguf 8,609
TheBloke/LLaMA-30b-GGUF llama-30b.Q4_K_S.gguf 19,045
TheBloke/Llama-2-70B-chat-GGUF llama-2-70b-chat.Q4_K_M.gguf 37,655

这里模型对内存的消耗较大,如果是orin nano选第一个7B大小模型,根据手里的硬件设备进行挑选下载,模型越大对内存要求越高。

测试结果如下

二、文本 + 视觉 (VLM)

教程 - MiniGPT-4

通过在 Jetson 上运行 MiniGPT-4,让您本地运行的 LLM 获得视觉访问权限!

设置容器MiniGPT-4

有关更多信息,请参阅 jetson-containers 的 minigpt4 软件包 README**

克隆和设置jetson-containers

复制代码
`git clone https://github.com/dusty-nv/jetson-containers
cd jetson-containers
sudo apt update; sudo apt install -y python3-pip
pip3 install -r requirements.txt
`

使用模型启动容器minigpt4

要使用推荐的型号启动 MiniGPT4 容器和 Web 服务器,请运行以下命令:

复制代码
`cd jetson-containers
./run.sh $(./autotag minigpt4) /bin/bash -c 'cd /opt/minigpt4.cpp/minigpt4 && python3 webui.py \
  $(huggingface-downloader --type=dataset maknee/minigpt4-13b-ggml/minigpt4-13B-f16.bin) \
  $(huggingface-downloader --type=dataset maknee/ggml-vicuna-v0-quantized/ggml-vicuna-13B-v0-q5_k.bin)'
`

然后,打开您的网络浏览器并访问 .http://<IP_ADDRESS>:7860

结果

三、图像生成 Stable-Diffusion

教程 - 稳定扩散

让我们在 NVIDIA Jetson 上运行 AUTOMATIC1111 的 stable-diffusion-webui 来根据我们的提示生成图像!

如何开始

如果您是第一次运行它,请完成预设置并查看 jetson-containers/stable-diffusion-webui 自述文件。

使用 和 script 自动拉取或构建兼容的容器映像:run.sh``autotag

复制代码
`cd jetson-containers
./run.sh $(./autotag stable-diffusion-webui)
`

容器有一个默认的运行命令 (),它将自动启动 Web 服务器,如下所示:CMD

复制代码
`cd /opt/stable-diffusion-webui && python3 launch.py \
  --data=/data/models/stable-diffusion \
  --enable-insecure-extension-access \
  --xformers \
  --listen \
  --port=7860
`

您应该看到它在第一次运行时下载模型检查点。

打开浏览器并访问http://<IP_ADDRESS>:7860

四、视觉Vision Transformers (ViT)

相关推荐
程序员黄老师23 分钟前
主流向量数据库全面解析
数据库·大模型·向量·rag
何中应3 小时前
快速上架第一个智能体
ai·大模型·智能体开发
victory04313 小时前
大模型学习阶段总结和下一阶段展望
深度学习·学习·大模型
谷哥的小弟6 小时前
Brave Search MCP服务器安装以及客户端连接配置
搜索引擎·大模型·spring ai·mcp·brave search
星云数灵6 小时前
大模型高级工程师考试练习题7
数据库·大模型·阿里云acp·大模型工程师·大模型考试题库·阿里云aca·大模型工程师acp
星云数灵20 小时前
大模型高级工程师考试练习题6
人工智能·大模型·大模型工程师·阿里云大模型aca·阿里云大模型工程师acp·大模型acp考试题库·acp认证
索木木1 天前
强化学习与思维链
大模型·sft·强化学习·思维链
KAI智习1 天前
大模型榜单周报(2026/01/10)
人工智能·大模型
怎么追摩羯座1 天前
使用PyCharm调用Ollama,制作智能问答机器人
ide·python·pycharm·大模型·ollama
万俟淋曦1 天前
【论文速递】2025年第52周(Dec-21-27)(Robotics/Embodied AI/LLM)
人工智能·深度学习·机器学习·机器人·大模型·论文·具身智能