RK3568笔记五:基于Yolov5的训练及部署

若该文为原创文章,转载请注明原文出处。

一. 部署概述

环境:Ubuntu20.04、python3.8

芯片:RK3568

芯片系统:buildroot

开发板:ATK-DLRK3568

开发主要参考文档:《Rockchip_Quick_Start_RKNN_Toolkit2_CN-1.4.0.pdf》、《Rockchip_User_Guide_RKNN_Toolkit2_CN-1.4.0.pdf》

二、yolov5模型训练

1、训练环境

训练是在云端训练的,平台AutoDL租了一台2080IT,配置如下:

2、环境搭建

1、创建conda环境

conda create -n rkyolov5 python=3.8       // 用于yolov5
conda create -n rknn2_env python=3.8 -y   // 用于rknn2

2、激活conda环境

conda activate rkyolov5
​
conda deactivate  // 退出环境

3、安装pytoch

pip install torch==1.7.1+cu101 torchvision==0.8.2+cu101 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html -i https://pypi.tuna.tsinghua.edu.cn/simple 

4、下载yolov5-v6.0

首先需要在官网下载yolov5-6.0的项目 我们打开yolov的官网,Tags选择6.0版本

pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

5、训练

python train.py --img 640 --data coco128.yaml --cfg yolov5s.yaml --weights yolov5s.pt --epoch 300 --batch-size 16 --device 0

出错:The aliases was originally deprecated in NumPy 1.20; for more details and guidance see the original release note at:

原因numpy版本问题

处理,重新安装

pip uninstall numpy
 
pip install numpy==1.22

出错:AttributeError: module 'PIL.Image' has no attribute 'ANTIALIAS

ModuleNotFoundError: No module named 'PIL'

原因是pillow库版本不支持,降低版本

pip install pillow==9.5.0

6、pt转onnx

转换步骤:

修改models/yolo.py,修改class Detect(nn.Module):的forward函数

注意!!!仅在转换时修改,在训练时改回原状态!再训练时不要忘记哦!

# def forward(self, x):
#     z = []  # inference output
#     for i in range(self.nl):
#         x[i] = self.m[i](x[i])  # conv
#         bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
#         x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
#
#         if not self.training:  # inference
#             if self.grid[i].shape[2:4] != x[i].shape[2:4] or self.onnx_dynamic:
#                 self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
#
#             y = x[i].sigmoid()
#             if self.inplace:
#                 y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i]  # xy
#                 y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
#             else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
#                 xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i]  # xy
#                 wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i].view(1, self.na, 1, 1, 2)  # wh
#                 y = torch.cat((xy, wh, y[..., 4:]), -1)
#             z.append(y.view(bs, -1, self.no))
#
#     return x if self.training else (torch.cat(z, 1), x)
​
def forward(self, x):
    z = []  # inference output
    for i in range(self.nl):
        x[i] = self.m[i](x[i])  # conv
​
    return x

修改export.py函数的--opset为12

运行export.py

python export.py --weights best.pt --img 640 --batch 1 --opset 12

简化模型

python -m onnxsim weights/yolov5s.onnx weights/yolov5s-sim.onnx

三、安装rknn-toolkit2

根据正点原子的教程安装,先安装工具链,在创建环境,在安装rknn-toolkit2,之后转换模型

下载地址:GitHub - rockchip-linux/rknn-toolkit2

1、创建一个新的环境

conda create rknn2_env python=3.8 -y

2、安装

进入packages

pip install rknn_toolkit2-1.5.2+b642f30c-cp38-cp38-linux_x86_64.whl

等待安装

把转换好的onnx 拷贝到 rknn-toolkit2-master/examples/onnx/yolov5目录下,

3、修改test.py文件

ONNX_MODEL = 'yolov5s_relu.onnx'
RKNN_MODEL = 'yolov5s_relu.rknn'

4、运行

python test.py

出错: ImportError: /lib/x86_64-linux-gnu/libm.so.6: version `GLIBC_2.29' not found (required by /root/miniconda3/envs/rknn2_env/lib/python3.8/site-packages/rknn/api/lib/linux-x86_64/cp38/librknnc.so)

原因:工具链没安装,安装后测试正常。

四、部署

通过测试,使用正点原子的yolov5例程测试结果不对,所以使用SDK里自带的rknpu2里的example

重新编译里面的例子,直接编译不编译不过,需要修改一下。

修改build-linux_RK356X.sh和CMakeLists.txt,把正点原子的libs拷贝过来重新编译

编译后的文件在install目录下,把rknn_yolov5_demo_Linux通过adb拷贝到开发板上。

打开开发板终端,运行: ./rknn_yolov5_demo model/RK356X/last.rknn model/zidane.jpg

生成的结果保存在当前目录下。

通过输出信息可以看来推理有出结果,结果也是对的,但只有一个,图片是有2个人.

程序应该还有地方要修改,等到改好后在开放代码。

如有侵权,或需要完整代码,请及时联系博主。

相关推荐
1101 110110 分钟前
STM32-笔记8-433M点灯
笔记
1101 110111 分钟前
STM32-笔记14-排队控制系统
笔记·stm32·嵌入式硬件
远离UE438 分钟前
UE5 渲染管线 学习笔记
笔记·学习·ue5
千天夜2 小时前
深度学习中的残差网络、加权残差连接(WRC)与跨阶段部分连接(CSP)详解
网络·人工智能·深度学习·神经网络·yolo·机器学习
一勺汤2 小时前
YOLOv8模型改进 第二十五讲 添加基于卷积调制(Convolution based Attention) 替换自注意力机制
深度学习·yolo·计算机视觉·模块·yolov8·yolov8改进·魔改
cwtlw2 小时前
CSS学习记录20
前端·css·笔记·学习
汇能感知2 小时前
光谱相机的工作原理
经验分享·笔记·科技·相机
紫罗兰盛开2 小时前
分布式调度框架学习笔记
笔记·学习
汇能感知2 小时前
光谱相机在农业中的具体应用案例
经验分享·笔记·科技
地球空间-技术小鱼3 小时前
YUM(Yellowdog Updater, Modified)和DNF(Dandified YUM)简介
linux·运维·服务器·笔记·学习