【函数讲解】botorch中的函数 is_non_dominated():用于计算非支配(non-dominated)前沿

默认求最大的Pareto前沿

python 复制代码
        # 获取训练目标值,计算Pareto前沿(非支配解集合),然后从样本中提取出Pareto最优解。
        train_obj = self.samples[1]
        pareto_mask = is_non_dominated(train_obj)
        pareto_y = train_obj[pareto_mask]

源码

这里用到了一个函数 is_non_dominated(),来看下该函数的源码:

python 复制代码
from __future__ import annotations

import torch
from torch import Tensor


def is_non_dominated(Y: Tensor, deduplicate: bool = True) -> Tensor:
    r"""Computes the non-dominated front.

    Note: this assumes maximization.

    Args:
        输入:张量 Y,其维度为 (batch_shape) x n x m,这里 n 代表样本数量,m 代表每个样本的目标数量。,其中括号括住的batch_shape意思是可选,可以有这个维度或者没有
        Y: A `(batch_shape) x n x m`-dim tensor of outcomes.
        deduplicate: A boolean indicating whether to only return unique points on the pareto frontier.

    Returns:
        返回:布尔张量,指示每个样本是否是非支配点
        A `(batch_shape) x n`-dim boolean tensor indicating whether each point is non-dominated.
    """
    Y1 = Y.unsqueeze(-3)
    Y2 = Y.unsqueeze(-2)
    dominates = (Y1 >= Y2).all(dim=-1) & (Y1 > Y2).any(dim=-1)
    nd_mask = ~(dominates.any(dim=-1))
    if deduplicate:
        # remove duplicates
        # find index of first occurrence of each unique element
        indices = (Y1 == Y2).all(dim=-1).long().argmax(dim=-1)
        keep = torch.zeros_like(nd_mask)
        keep.scatter_(dim=-1, index=indices, value=1.0)
        return nd_mask & keep
    return nd_mask

示例:

有一组解,每个解有两个目标值,找出这组解中的非支配解:

python 复制代码
import torch
from botorch.utils.multi_objective import is_non_dominated

# 假设有5个解,每个解有2个目标
Y = torch.tensor([
    [0.5, 0.7],
    [0.6, 0.6],
    [0.8, 0.3],
    [0.4, 0.9],
    [0.7, 0.5]
])

# 调用 is_non_dominated 函数
non_dominated_mask = is_non_dominated(Y)

# 打印非支配解
print("Non-dominated solutions:", Y[non_dominated_mask])

实例:

这里就是先拿到所有的目标值,然后计算哪些是Pareto(True或者False),最后再原始数据中选出所有True的数据

python 复制代码
        # 获取训练目标值,计算Pareto前沿(非支配解集合),然后从样本中提取出Pareto最优解。
        train_obj = self.samples[1]
        pareto_mask = is_non_dominated(train_obj)
        pareto_y = train_obj[pareto_mask]
相关推荐
wearegogog1235 小时前
基于 MATLAB 的卡尔曼滤波器实现,用于消除噪声并估算信号
前端·算法·matlab
一只小小汤圆5 小时前
几何算法库
算法
Evand J5 小时前
【2026课题推荐】DOA定位——MUSIC算法进行多传感器协同目标定位。附MATLAB例程运行结果
开发语言·算法·matlab
leo__5205 小时前
基于MATLAB的交互式多模型跟踪算法(IMM)实现
人工智能·算法·matlab
忆锦紫5 小时前
图像增强算法:Gamma映射算法及MATLAB实现
开发语言·算法·matlab
脑极体5 小时前
云厂商的AI决战
人工智能
t198751286 小时前
基于自适应Chirplet变换的雷达回波微多普勒特征提取
算法
guygg886 小时前
采用PSO算法优化PID参数,通过调用Simulink和PSO使得ITAE标准最小化
算法
njsgcs6 小时前
NVIDIA NitroGen 是强化学习还是llm
人工智能
老鼠只爱大米6 小时前
LeetCode算法题详解 239:滑动窗口最大值
算法·leetcode·双端队列·滑动窗口·滑动窗口最大值·单调队列