Spark DataFrame join后移除重复的列

在Spark,两个DataFrame做join操作后,会出现重复的列。例如:

java 复制代码
 Dataset<Row> moviesWithRating = moviesDF
                .join(averageRatingMoviesDF,
                        moviesDF.col("movieId").equalTo(averageRatingMoviesDF.col("movieId")));

其schema如下:

java 复制代码
//moviesWithRating.printSchema();
        /**
         * root
         *  |-- _id: struct (nullable = true)
         *  |    |-- oid: string (nullable = true)
         *  |-- actors: string (nullable = true)
         *  |-- description: string (nullable = true)
         *  |-- directors: string (nullable = true)
         *  |-- genres: string (nullable = true)
         *  |-- issue: string (nullable = true)
         *  |-- language: string (nullable = true)
         *  |-- movieId: integer (nullable = true)
         *  |-- shoot: string (nullable = true)
         *  |-- timeLong: string (nullable = true)
         *  |-- title: string (nullable = true)
         *  |-- movieId: integer (nullable = true)
         *  |-- avgRating: double (nullable = true)
         */

我们在继续操作这个DataFrame时,可能就会报错,如下:org.apache.spark.sql.AnalysisException: Reference 'movieId' is ambiguous

解决方案有两种方法可以用来移除重复的列

  • 方法一:join表达式使用字符串数组(用于join的列)
java 复制代码
Seq<String> joinColumns = JavaConversions.asScalaBuffer(Arrays.asList("movieId", "movieId")).toList();
        Dataset<Row> moviesWithRating = moviesDF
                .join(
                        averageRatingMoviesDF,
                        joinColumns,
                        "inner");

这里DataFrame moviesDF和averageRatingMoviesDF使用了movieId和movieId两列来做join,返回的结果会对这两列去重

scala解决方案:

scala 复制代码
df1.join(df2, Seq("id","name"),"left")  // df1和df2使用了id和name两列来做join,返回的结果会对这两列去
  • 方法二:使用select返回指定的列
java 复制代码
Dataset<Row> moviesWithRating = moviesDF
                .join(averageRatingMoviesDF,
                        moviesDF.col("movieId").equalTo(averageRatingMoviesDF.col("movieId")))
                .select(
                        moviesDF.col("movieId"),

                        col("actors"),
                        col("description"),
                        col("directors"),
                        col("genres"),
                        col("issue"),
                        col("language"),
                        col("shoot"),
                        col("timeLong"),
                        col("title"),
                        col("avgRating")
                );

说明:

如果列较少, 推荐使用第二种.

如果列较多, 推荐使用第一种.

相关推荐
Json_181790144802 小时前
An In-depth Look into the 1688 Product Details Data API Interface
大数据·json
lzhlizihang2 小时前
【spark的集群模式搭建】Standalone集群模式的搭建(简单明了的安装教程)
spark·standalone模式·spark集群搭建
WX187021128733 小时前
在分布式光伏电站如何进行电能质量的治理?
分布式
Qspace丨轻空间4 小时前
气膜场馆:推动体育文化旅游创新发展的关键力量—轻空间
大数据·人工智能·安全·生活·娱乐
Elastic 中国社区官方博客5 小时前
如何将数据从 AWS S3 导入到 Elastic Cloud - 第 3 部分:Elastic S3 连接器
大数据·elasticsearch·搜索引擎·云计算·全文检索·可用性测试·aws
Aloudata6 小时前
从Apache Atlas到Aloudata BIG,数据血缘解析有何改变?
大数据·apache·数据血缘·主动元数据·数据链路
不能再留遗憾了6 小时前
RabbitMQ 高级特性——消息分发
分布式·rabbitmq·ruby
水豚AI课代表6 小时前
分析报告、调研报告、工作方案等的提示词
大数据·人工智能·学习·chatgpt·aigc
茶馆大橘6 小时前
微服务系列六:分布式事务与seata
分布式·docker·微服务·nacos·seata·springcloud
材料苦逼不会梦到计算机白富美9 小时前
golang分布式缓存项目 Day 1
分布式·缓存·golang