Spark DataFrame join后移除重复的列

在Spark,两个DataFrame做join操作后,会出现重复的列。例如:

java 复制代码
 Dataset<Row> moviesWithRating = moviesDF
                .join(averageRatingMoviesDF,
                        moviesDF.col("movieId").equalTo(averageRatingMoviesDF.col("movieId")));

其schema如下:

java 复制代码
//moviesWithRating.printSchema();
        /**
         * root
         *  |-- _id: struct (nullable = true)
         *  |    |-- oid: string (nullable = true)
         *  |-- actors: string (nullable = true)
         *  |-- description: string (nullable = true)
         *  |-- directors: string (nullable = true)
         *  |-- genres: string (nullable = true)
         *  |-- issue: string (nullable = true)
         *  |-- language: string (nullable = true)
         *  |-- movieId: integer (nullable = true)
         *  |-- shoot: string (nullable = true)
         *  |-- timeLong: string (nullable = true)
         *  |-- title: string (nullable = true)
         *  |-- movieId: integer (nullable = true)
         *  |-- avgRating: double (nullable = true)
         */

我们在继续操作这个DataFrame时,可能就会报错,如下:org.apache.spark.sql.AnalysisException: Reference 'movieId' is ambiguous

解决方案有两种方法可以用来移除重复的列

  • 方法一:join表达式使用字符串数组(用于join的列)
java 复制代码
Seq<String> joinColumns = JavaConversions.asScalaBuffer(Arrays.asList("movieId", "movieId")).toList();
        Dataset<Row> moviesWithRating = moviesDF
                .join(
                        averageRatingMoviesDF,
                        joinColumns,
                        "inner");

这里DataFrame moviesDF和averageRatingMoviesDF使用了movieId和movieId两列来做join,返回的结果会对这两列去重

scala解决方案:

scala 复制代码
df1.join(df2, Seq("id","name"),"left")  // df1和df2使用了id和name两列来做join,返回的结果会对这两列去
  • 方法二:使用select返回指定的列
java 复制代码
Dataset<Row> moviesWithRating = moviesDF
                .join(averageRatingMoviesDF,
                        moviesDF.col("movieId").equalTo(averageRatingMoviesDF.col("movieId")))
                .select(
                        moviesDF.col("movieId"),

                        col("actors"),
                        col("description"),
                        col("directors"),
                        col("genres"),
                        col("issue"),
                        col("language"),
                        col("shoot"),
                        col("timeLong"),
                        col("title"),
                        col("avgRating")
                );

说明:

如果列较少, 推荐使用第二种.

如果列较多, 推荐使用第一种.

相关推荐
在肯德基吃麻辣烫31 分钟前
《Redis》缓存与分布式锁
redis·分布式·缓存
亲爱的非洲野猪33 分钟前
Kafka消息积压全面解决方案:从应急处理到系统优化
分布式·kafka
掘金-我是哪吒1 小时前
分布式微服务系统架构第157集:JavaPlus技术文档平台日更-Java多线程编程技巧
java·分布式·微服务·云原生·架构
掘金-我是哪吒2 小时前
分布式微服务系统架构第155集:JavaPlus技术文档平台日更-Java线程池实现原理
java·分布式·微服务·云原生·架构
Bug退退退12311 小时前
RabbitMQ 高级特性之死信队列
java·分布式·spring·rabbitmq
prince0512 小时前
Kafka 生产者和消费者高级用法
分布式·kafka·linq
诗旸的技术记录与分享13 小时前
Flink-1.19.0源码详解-番外补充3-StreamGraph图
大数据·flink
资讯分享周13 小时前
Alpha系统联结大数据、GPT两大功能,助力律所管理降本增效
大数据·gpt
菜萝卜子13 小时前
【Project】基于kafka的高可用分布式日志监控与告警系统
分布式·kafka
G皮T14 小时前
【Elasticsearch】深度分页及其替代方案
大数据·elasticsearch·搜索引擎·scroll·检索·深度分页·search_after