Spark DataFrame join后移除重复的列

在Spark,两个DataFrame做join操作后,会出现重复的列。例如:

java 复制代码
 Dataset<Row> moviesWithRating = moviesDF
                .join(averageRatingMoviesDF,
                        moviesDF.col("movieId").equalTo(averageRatingMoviesDF.col("movieId")));

其schema如下:

java 复制代码
//moviesWithRating.printSchema();
        /**
         * root
         *  |-- _id: struct (nullable = true)
         *  |    |-- oid: string (nullable = true)
         *  |-- actors: string (nullable = true)
         *  |-- description: string (nullable = true)
         *  |-- directors: string (nullable = true)
         *  |-- genres: string (nullable = true)
         *  |-- issue: string (nullable = true)
         *  |-- language: string (nullable = true)
         *  |-- movieId: integer (nullable = true)
         *  |-- shoot: string (nullable = true)
         *  |-- timeLong: string (nullable = true)
         *  |-- title: string (nullable = true)
         *  |-- movieId: integer (nullable = true)
         *  |-- avgRating: double (nullable = true)
         */

我们在继续操作这个DataFrame时,可能就会报错,如下:org.apache.spark.sql.AnalysisException: Reference 'movieId' is ambiguous

解决方案有两种方法可以用来移除重复的列

  • 方法一:join表达式使用字符串数组(用于join的列)
java 复制代码
Seq<String> joinColumns = JavaConversions.asScalaBuffer(Arrays.asList("movieId", "movieId")).toList();
        Dataset<Row> moviesWithRating = moviesDF
                .join(
                        averageRatingMoviesDF,
                        joinColumns,
                        "inner");

这里DataFrame moviesDF和averageRatingMoviesDF使用了movieId和movieId两列来做join,返回的结果会对这两列去重

scala解决方案:

scala 复制代码
df1.join(df2, Seq("id","name"),"left")  // df1和df2使用了id和name两列来做join,返回的结果会对这两列去
  • 方法二:使用select返回指定的列
java 复制代码
Dataset<Row> moviesWithRating = moviesDF
                .join(averageRatingMoviesDF,
                        moviesDF.col("movieId").equalTo(averageRatingMoviesDF.col("movieId")))
                .select(
                        moviesDF.col("movieId"),

                        col("actors"),
                        col("description"),
                        col("directors"),
                        col("genres"),
                        col("issue"),
                        col("language"),
                        col("shoot"),
                        col("timeLong"),
                        col("title"),
                        col("avgRating")
                );

说明:

如果列较少, 推荐使用第二种.

如果列较多, 推荐使用第一种.

相关推荐
北邮-吴怀玉3 小时前
2.2.1.1 大数据方法论与实践指南-公司产品&功能命名管理
大数据·数据治理
码龄3年 审核中7 小时前
说说SSH的端口转发
大数据·运维·ssh
SeaTunnel8 小时前
(二)从分层架构到数据湖仓架构:数据仓库分层下的技术架构与举例
大数据·数据仓库·数据分析·数据同步
兜兜风d'8 小时前
RabbitMQ 七种工作模式全解析
分布式·rabbitmq
数据库安全8 小时前
牛品推荐|分类分级效能飞跃:美创智能数据安全分类分级平台
大数据·人工智能·分类
数据库安全8 小时前
《金融电子化》:构建金融韧性运行安全体系:从灾备管理到主动防御新范式
大数据·安全·金融
菜鸡儿齐9 小时前
kafka高可靠性
分布式·kafka
GG向前冲9 小时前
【大数据】Spark MLlib 机器学习流水线搭建
大数据·机器学习·spark-ml
我要升天!11 小时前
Git的原理与使用 -- 基础操作
大数据·服务器·git·elasticsearch
兜兜风d'11 小时前
RabbitMQ 持久性详解
spring boot·分布式·rabbitmq·1024程序员节