考虑区域多能源系统集群协同优化的联合需求侧响应模型(matlab代码)

该程序复现《考虑区域多能源系统集群协同优化的联合需求侧响应模型》文献模型,程序的核心是对多个区域级多能源系统互联系统进行多目标优化,并且考虑联合需求侧响应,以多个区域多能源系统运行总成本最小、碳排放最小为目标,建立多区域电气热(冷)互联系统多目标优化模型,和原文的区别是:多目标求解原文献用的是NSGA_Ⅱ算法,但是程序采用的是混合整数规划算法,即直接采用yalmip求解器进行求解,程序步骤清晰,不仅给出了多目标求解代码,同时给出了单目标求解代码,采用matlab+yalmip(cplex或gurobi)进行求解,必要注释清晰,方便学习!

  • 区域多能源系统用户激励模型

该部分用户激励模型和常规的需求侧响应区别不大,采用可削减、可转移和可替代负荷作为需求响应变量,并且该三类负荷满足调节比例限制,该部分成本在程序中以约束的形式表达,但是实际上尽量选取变量直接计算的方式更为妥当。对应的程序代码如下:

复制代码
C=[C,  0<=Ekexuejian1,Ekexuejian1<=0.1*E_load1D ];%需求响应  公式(2)
C=[C,  0<=Ekexuejian2,Ekexuejian2<=0.1*E_load2D ]; 
C=[C,  0<=Ekexuejian3,Ekexuejian3<=0.1*E_load3D ];
C=[C,  -0.1*E_load1D<=Ekepingyi1,Ekepingyi1<=0.1*E_load1D ];
C=[C,  -0.1*E_load2D<=Ekepingyi2,Ekepingyi2<=0.1*E_load2D ];
C=[C,  -0.1*E_load3D<=Ekepingyi3,Ekepingyi3<=0.1*E_load3D ];
C=[C,  sum(Ekepingyi1)==0 ];
C=[C,  sum(Ekepingyi2)==0 ];
C=[C,  sum(Ekepingyi3)==0 ];
C=[C,  0<=Eketidai1,Eketidai1<=0.1*E_load1D ];
C=[C,  0<=Eketidai2,Eketidai2<=0.1*E_load2D ];
C=[C,  0<=Eketidai3,Eketidai3<=0.1*E_load3D ];
C=[C,  Eketidai1==Gketidai1*10 ];  %10是单位m3体积的天然气热值36MJ
C=[C,  Eketidai2==Gketidai2*10 ];  %10是单位m3体积的天然气热值36MJ
C=[C,  Eketidai3==Gketidai3*10 ];  %10是单位m3体积的天然气热值36MJ
​
%%  需求侧响应补偿成本  公式(1)
F_IDSR = sdpvar(1,1);           
C=[C,F_IDSR==0.432*sum(abs(Ekexuejian1)+abs(Ekexuejian2)+abs(Ekexuejian3))+0.060*sum(abs(Ekepingyi1)+abs(Ekepingyi2)+abs(Ekepingyi3))/2+0.120*sum(abs(Eketidai1)+abs(Eketidai2)+abs(Eketidai3)) ];
​
  • 目标函数

3 程序结果

相关推荐
闻缺陷则喜何志丹41 分钟前
【贪心 字典序 回文 最长公共前缀】LeetCode3734. 大于目标字符串的最小字典序回文排列|分数未知
c++·算法·力扣·贪心·字典序·回文·最长公共前缀
weixin_514221851 小时前
FDTD代码学习-1
学习·算法·lumerical·fdtd
寰宇视讯2 小时前
邦邦汽服x优湃能源汽车零部件绿色循环中心揭牌暨中保智修新能源技术中心授牌仪式圆满举行
汽车·能源
AI柠檬2 小时前
机器学习:数据集的划分
人工智能·算法·机器学习
让我们一起加油好吗2 小时前
【数论】裴蜀定理与扩展欧几里得算法 (exgcd)
算法·数论·裴蜀定理·扩展欧几里得算法·逆元
Geo_V2 小时前
提示词工程
人工智能·python·算法·ai
侯小啾3 小时前
【22】C语言 - 二维数组详解
c语言·数据结构·算法
TL滕3 小时前
从0开始学算法——第一天(如何高效学习算法)
数据结构·笔记·学习·算法
傻童:CPU3 小时前
DFS迷宫问题
算法·深度优先
B站_计算机毕业设计之家3 小时前
计算机视觉:python车辆行人检测与跟踪系统 YOLO模型 SORT算法 PyQt5界面 目标检测+目标跟踪 深度学习 计算机✅
人工智能·python·深度学习·算法·yolo·目标检测·机器学习