考虑区域多能源系统集群协同优化的联合需求侧响应模型(matlab代码)

该程序复现《考虑区域多能源系统集群协同优化的联合需求侧响应模型》文献模型,程序的核心是对多个区域级多能源系统互联系统进行多目标优化,并且考虑联合需求侧响应,以多个区域多能源系统运行总成本最小、碳排放最小为目标,建立多区域电气热(冷)互联系统多目标优化模型,和原文的区别是:多目标求解原文献用的是NSGA_Ⅱ算法,但是程序采用的是混合整数规划算法,即直接采用yalmip求解器进行求解,程序步骤清晰,不仅给出了多目标求解代码,同时给出了单目标求解代码,采用matlab+yalmip(cplex或gurobi)进行求解,必要注释清晰,方便学习!

  • 区域多能源系统用户激励模型

该部分用户激励模型和常规的需求侧响应区别不大,采用可削减、可转移和可替代负荷作为需求响应变量,并且该三类负荷满足调节比例限制,该部分成本在程序中以约束的形式表达,但是实际上尽量选取变量直接计算的方式更为妥当。对应的程序代码如下:

复制代码
C=[C,  0<=Ekexuejian1,Ekexuejian1<=0.1*E_load1D ];%需求响应  公式(2)
C=[C,  0<=Ekexuejian2,Ekexuejian2<=0.1*E_load2D ]; 
C=[C,  0<=Ekexuejian3,Ekexuejian3<=0.1*E_load3D ];
C=[C,  -0.1*E_load1D<=Ekepingyi1,Ekepingyi1<=0.1*E_load1D ];
C=[C,  -0.1*E_load2D<=Ekepingyi2,Ekepingyi2<=0.1*E_load2D ];
C=[C,  -0.1*E_load3D<=Ekepingyi3,Ekepingyi3<=0.1*E_load3D ];
C=[C,  sum(Ekepingyi1)==0 ];
C=[C,  sum(Ekepingyi2)==0 ];
C=[C,  sum(Ekepingyi3)==0 ];
C=[C,  0<=Eketidai1,Eketidai1<=0.1*E_load1D ];
C=[C,  0<=Eketidai2,Eketidai2<=0.1*E_load2D ];
C=[C,  0<=Eketidai3,Eketidai3<=0.1*E_load3D ];
C=[C,  Eketidai1==Gketidai1*10 ];  %10是单位m3体积的天然气热值36MJ
C=[C,  Eketidai2==Gketidai2*10 ];  %10是单位m3体积的天然气热值36MJ
C=[C,  Eketidai3==Gketidai3*10 ];  %10是单位m3体积的天然气热值36MJ
​
%%  需求侧响应补偿成本  公式(1)
F_IDSR = sdpvar(1,1);           
C=[C,F_IDSR==0.432*sum(abs(Ekexuejian1)+abs(Ekexuejian2)+abs(Ekexuejian3))+0.060*sum(abs(Ekepingyi1)+abs(Ekepingyi2)+abs(Ekepingyi3))/2+0.120*sum(abs(Eketidai1)+abs(Eketidai2)+abs(Eketidai3)) ];
​
  • 目标函数

3 程序结果

相关推荐
pianmian11 小时前
python数据结构基础(7)
数据结构·算法
好奇龙猫3 小时前
【学习AI-相关路程-mnist手写数字分类-win-硬件:windows-自我学习AI-实验步骤-全连接神经网络(BPnetwork)-操作流程(3) 】
人工智能·算法
sp_fyf_20244 小时前
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-11-01
人工智能·深度学习·神经网络·算法·机器学习·语言模型·数据挖掘
香菜大丸4 小时前
链表的归并排序
数据结构·算法·链表
jrrz08284 小时前
LeetCode 热题100(七)【链表】(1)
数据结构·c++·算法·leetcode·链表
oliveira-time4 小时前
golang学习2
算法
南宫生5 小时前
贪心算法习题其四【力扣】【算法学习day.21】
学习·算法·leetcode·链表·贪心算法
懒惰才能让科技进步6 小时前
从零学习大模型(十二)-----基于梯度的重要性剪枝(Gradient-based Pruning)
人工智能·深度学习·学习·算法·chatgpt·transformer·剪枝
Ni-Guvara6 小时前
函数对象笔记
c++·算法
泉崎7 小时前
11.7比赛总结
数据结构·算法