考虑区域多能源系统集群协同优化的联合需求侧响应模型(matlab代码)

该程序复现《考虑区域多能源系统集群协同优化的联合需求侧响应模型》文献模型,程序的核心是对多个区域级多能源系统互联系统进行多目标优化,并且考虑联合需求侧响应,以多个区域多能源系统运行总成本最小、碳排放最小为目标,建立多区域电气热(冷)互联系统多目标优化模型,和原文的区别是:多目标求解原文献用的是NSGA_Ⅱ算法,但是程序采用的是混合整数规划算法,即直接采用yalmip求解器进行求解,程序步骤清晰,不仅给出了多目标求解代码,同时给出了单目标求解代码,采用matlab+yalmip(cplex或gurobi)进行求解,必要注释清晰,方便学习!

  • 区域多能源系统用户激励模型

该部分用户激励模型和常规的需求侧响应区别不大,采用可削减、可转移和可替代负荷作为需求响应变量,并且该三类负荷满足调节比例限制,该部分成本在程序中以约束的形式表达,但是实际上尽量选取变量直接计算的方式更为妥当。对应的程序代码如下:

复制代码
C=[C,  0<=Ekexuejian1,Ekexuejian1<=0.1*E_load1D ];%需求响应  公式(2)
C=[C,  0<=Ekexuejian2,Ekexuejian2<=0.1*E_load2D ]; 
C=[C,  0<=Ekexuejian3,Ekexuejian3<=0.1*E_load3D ];
C=[C,  -0.1*E_load1D<=Ekepingyi1,Ekepingyi1<=0.1*E_load1D ];
C=[C,  -0.1*E_load2D<=Ekepingyi2,Ekepingyi2<=0.1*E_load2D ];
C=[C,  -0.1*E_load3D<=Ekepingyi3,Ekepingyi3<=0.1*E_load3D ];
C=[C,  sum(Ekepingyi1)==0 ];
C=[C,  sum(Ekepingyi2)==0 ];
C=[C,  sum(Ekepingyi3)==0 ];
C=[C,  0<=Eketidai1,Eketidai1<=0.1*E_load1D ];
C=[C,  0<=Eketidai2,Eketidai2<=0.1*E_load2D ];
C=[C,  0<=Eketidai3,Eketidai3<=0.1*E_load3D ];
C=[C,  Eketidai1==Gketidai1*10 ];  %10是单位m3体积的天然气热值36MJ
C=[C,  Eketidai2==Gketidai2*10 ];  %10是单位m3体积的天然气热值36MJ
C=[C,  Eketidai3==Gketidai3*10 ];  %10是单位m3体积的天然气热值36MJ
​
%%  需求侧响应补偿成本  公式(1)
F_IDSR = sdpvar(1,1);           
C=[C,F_IDSR==0.432*sum(abs(Ekexuejian1)+abs(Ekexuejian2)+abs(Ekexuejian3))+0.060*sum(abs(Ekepingyi1)+abs(Ekepingyi2)+abs(Ekepingyi3))/2+0.120*sum(abs(Eketidai1)+abs(Eketidai2)+abs(Eketidai3)) ];
​
  • 目标函数

3 程序结果

相关推荐
晶台光耦19 分钟前
光耦——光伏储能的隐形动力,引领绿色能源迈向新纪元
能源·光耦·光耦应用·光耦选型·光伏储能
追梦的小猴子23 分钟前
智慧监测数据集成平台:破孤岛,促互联,提数据价值强化履约,保质量,降成本为水务、城市、能源等领域发展添动力
智慧城市·能源
VertexGeek32 分钟前
Rust学习(八):异常处理和宏编程:
学习·算法·rust
石小石Orz33 分钟前
Three.js + AI:AI 算法生成 3D 萤火虫飞舞效果~
javascript·人工智能·算法
火山口车神丶1 小时前
某车企ASW面试笔试题
c++·matlab
jiao_mrswang1 小时前
leetcode-18-四数之和
算法·leetcode·职场和发展
qystca2 小时前
洛谷 B3637 最长上升子序列 C语言 记忆化搜索->‘正序‘dp
c语言·开发语言·算法
薯条不要番茄酱2 小时前
数据结构-8.Java. 七大排序算法(中篇)
java·开发语言·数据结构·后端·算法·排序算法·intellij-idea
今天吃饺子2 小时前
2024年SCI一区最新改进优化算法——四参数自适应生长优化器,MATLAB代码免费获取...
开发语言·算法·matlab
是阿建吖!2 小时前
【优选算法】二分查找
c++·算法