sklearn基础--『回归模型评估』之评估可视化

scikit-learn中,回归模型的可视化评估 是一个重要环节。

它帮助我们理解模型的性能,分析模型的预测能力,以及检查模型是否存在潜在的问题。

通过可视化评估,我们可以更直观地了解回归模型的效果,而不仅仅依赖于传统的评估指标。

1. 残差图

所谓残差,就是实际观测值与预测值之间的差值。

残差图 是指以残差 为纵坐标,以任何其他指定的量为横坐标的散点图。

如果残差图中描绘的点围绕残差等于0的直线上下随机散布,说明回归直线对原观测值的拟合情况良好。反之,则说明回归直线对原观测值的拟合不理想。

下面做一个简单的线性回归模型,然后绘制残差图。

python 复制代码
from sklearn.datasets import make_regression
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.metrics import PredictionErrorDisplay

fig, ax = plt.subplots(1, 2)
fig.set_size_inches(10, 4)

X, y = make_regression(n_samples=100, n_features=1, noise=10)
ax[0].scatter(X[:, 0], y, marker="o")
ax[0].set_title("样本数据")

# 初始化最小二乘法线性模型
reg = LinearRegression()
# 训练模型
reg.fit(X, y)
y_pred = reg.predict(X)

ax[0].plot(X, y_pred, color="red")
display = PredictionErrorDisplay(y_true=y, y_pred=y_pred)
ax[1].set_title("残差图")
display.plot(ax=ax[1])

plt.show()

左边是随机生成的样本数据 ,其中的红线 是训练之后拟合的线性模型。

右边是根据scikit-learn中提供的PredictionErrorDisplay模块生成的残差图

2. 对比图

对比图 将实际目标值与模型预测值进行对比,直观地展示模型的预测能力。

通常,我们希望看到实际值预测值 沿着一条 <math xmlns="http://www.w3.org/1998/Math/MathML"> y = x y=x </math>y=x的直线分布,这意味着模型预测非常准确。

下面用一些混乱度高的样本,来看看对比图的效果。

python 复制代码
from sklearn.datasets import make_regression
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.metrics import PredictionErrorDisplay

fig, ax = plt.subplots(1, 2)
fig.set_size_inches(12, 6)

# 混乱度高,noise=100
X, y = make_regression(n_samples=100, n_features=1, noise=100)
ax[0].scatter(X[:, 0], y, marker="o")
ax[0].set_title("样本数据")

# 初始化最小二乘法线性模型
reg = LinearRegression()
# 训练模型
reg.fit(X, y)
y_pred = reg.predict(X)

ax[0].plot(X, y_pred, color="red")
display = PredictionErrorDisplay(y_true=y, y_pred=y_pred)
ax[1].set_title("对比图")
display.plot(ax=ax[1], kind="actual_vs_predicted")

plt.show()

原始样本比较混乱,线性模型 很难拟合,所以看对比图 就可以发现,真实值预测值 差别很大。

越靠近对比图 中间那个虚线的点,真实值预测值越接近。

换一个混乱程度低的样本,再看看对比图的效果。

python 复制代码
# 混乱度 noise=10,比如上面那个示例降10倍
# 上面代码只改这一行,其它部分代码不用改
X, y = make_regression(n_samples=100, n_features=1, noise=10)

从图中也可以看出,这次的模型拟合效果要好很多。

3. 总结

可视化的图形向我们传达了模型预测的准确性 、线性假设的满足程度 、误差项的独立性 以及特征对预测的影响程度等信息,让我们对模型有更深入的了解。

通过图形化的方式,帮助我们更直观地理解回归模型的性能,发现模型潜在的问题,指导我们改进模型。

不过,可视化评估 虽然直观,但并不能完全替代传统的量化评估指标。

两者应该相互补充,共同构成对回归模型性能的全面评价。

相关推荐
开MINI的工科男32 分钟前
深蓝学院-- 量产自动驾驶中的规划控制算法 小鹏
人工智能·机器学习·自动驾驶
AI大模型知识分享2 小时前
Prompt最佳实践|如何用参考文本让ChatGPT答案更精准?
人工智能·深度学习·机器学习·chatgpt·prompt·gpt-3
小言从不摸鱼4 小时前
【AI大模型】ChatGPT模型原理介绍(下)
人工智能·python·深度学习·机器学习·自然语言处理·chatgpt
Lossya8 小时前
【机器学习】参数学习的基本概念以及贝叶斯网络的参数学习和马尔可夫随机场的参数学习
人工智能·学习·机器学习·贝叶斯网络·马尔科夫随机场·参数学习
Trouvaille ~8 小时前
【Python篇】深度探索NumPy(下篇):从科学计算到机器学习的高效实战技巧
图像处理·python·机器学习·numpy·信号处理·时间序列分析·科学计算
qq_5503379911 小时前
研1日记14
人工智能·深度学习·机器学习
i嗑盐の小F11 小时前
【IEEE&ACM Fellow、CCF组委】第三届人工智能与智能信息处理国际学术会议(AIIIP 2024)
人工智能·深度学习·算法·机器学习·自然语言处理·信号处理
大耳朵爱学习13 小时前
大模型预训练的降本增效之路——从信息密度出发
人工智能·深度学习·机器学习·自然语言处理·大模型·llm·大语言模型
FOUR_A14 小时前
【机器学习导引】ch2-模型评估与选择
人工智能·机器学习
geekrabbit15 小时前
机器学习和深度学习的区别
运维·人工智能·深度学习·机器学习·浪浪云