sklearn基础--『回归模型评估』之评估可视化

scikit-learn中,回归模型的可视化评估 是一个重要环节。

它帮助我们理解模型的性能,分析模型的预测能力,以及检查模型是否存在潜在的问题。

通过可视化评估,我们可以更直观地了解回归模型的效果,而不仅仅依赖于传统的评估指标。

1. 残差图

所谓残差,就是实际观测值与预测值之间的差值。

残差图 是指以残差 为纵坐标,以任何其他指定的量为横坐标的散点图。

如果残差图中描绘的点围绕残差等于0的直线上下随机散布,说明回归直线对原观测值的拟合情况良好。反之,则说明回归直线对原观测值的拟合不理想。

下面做一个简单的线性回归模型,然后绘制残差图。

python 复制代码
from sklearn.datasets import make_regression
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.metrics import PredictionErrorDisplay

fig, ax = plt.subplots(1, 2)
fig.set_size_inches(10, 4)

X, y = make_regression(n_samples=100, n_features=1, noise=10)
ax[0].scatter(X[:, 0], y, marker="o")
ax[0].set_title("样本数据")

# 初始化最小二乘法线性模型
reg = LinearRegression()
# 训练模型
reg.fit(X, y)
y_pred = reg.predict(X)

ax[0].plot(X, y_pred, color="red")
display = PredictionErrorDisplay(y_true=y, y_pred=y_pred)
ax[1].set_title("残差图")
display.plot(ax=ax[1])

plt.show()

左边是随机生成的样本数据 ,其中的红线 是训练之后拟合的线性模型。

右边是根据scikit-learn中提供的PredictionErrorDisplay模块生成的残差图

2. 对比图

对比图 将实际目标值与模型预测值进行对比,直观地展示模型的预测能力。

通常,我们希望看到实际值预测值 沿着一条 <math xmlns="http://www.w3.org/1998/Math/MathML"> y = x y=x </math>y=x的直线分布,这意味着模型预测非常准确。

下面用一些混乱度高的样本,来看看对比图的效果。

python 复制代码
from sklearn.datasets import make_regression
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.metrics import PredictionErrorDisplay

fig, ax = plt.subplots(1, 2)
fig.set_size_inches(12, 6)

# 混乱度高,noise=100
X, y = make_regression(n_samples=100, n_features=1, noise=100)
ax[0].scatter(X[:, 0], y, marker="o")
ax[0].set_title("样本数据")

# 初始化最小二乘法线性模型
reg = LinearRegression()
# 训练模型
reg.fit(X, y)
y_pred = reg.predict(X)

ax[0].plot(X, y_pred, color="red")
display = PredictionErrorDisplay(y_true=y, y_pred=y_pred)
ax[1].set_title("对比图")
display.plot(ax=ax[1], kind="actual_vs_predicted")

plt.show()

原始样本比较混乱,线性模型 很难拟合,所以看对比图 就可以发现,真实值预测值 差别很大。

越靠近对比图 中间那个虚线的点,真实值预测值越接近。

换一个混乱程度低的样本,再看看对比图的效果。

python 复制代码
# 混乱度 noise=10,比如上面那个示例降10倍
# 上面代码只改这一行,其它部分代码不用改
X, y = make_regression(n_samples=100, n_features=1, noise=10)

从图中也可以看出,这次的模型拟合效果要好很多。

3. 总结

可视化的图形向我们传达了模型预测的准确性 、线性假设的满足程度 、误差项的独立性 以及特征对预测的影响程度等信息,让我们对模型有更深入的了解。

通过图形化的方式,帮助我们更直观地理解回归模型的性能,发现模型潜在的问题,指导我们改进模型。

不过,可视化评估 虽然直观,但并不能完全替代传统的量化评估指标。

两者应该相互补充,共同构成对回归模型性能的全面评价。

相关推荐
搞科研的小刘选手4 分钟前
【经济方向专题会议】第二届经济数据分析与人工智能国际学术会议 (EDAI 2025)
人工智能·机器学习·网络安全·大数据分析·经济·经济数据分析·绿色经济
StarPrayers.2 小时前
机器学习中的等高线
人工智能·机器学习
JJJJ_iii2 小时前
【机器学习10】项目生命周期、偏斜类别评估、决策树
人工智能·python·深度学习·算法·决策树·机器学习
rgb2gray2 小时前
共享自行车与电动共享自行车使用中建成环境影响的对比研究:基于合肥数据的时空机器学习分析
人工智能·机器学习·图论·xgboost·shap·gtwr·时空机器学习
jghhh014 小时前
使用cvx工具箱求解svm的原问题及其对偶问题
人工智能·机器学习·支持向量机
低音钢琴4 小时前
【人工智能系列:走近人工智能05】基于 PyTorch 的机器学习开发与部署实战
人工智能·pytorch·机器学习
JJJJ_iii6 小时前
【机器学习11】决策树进阶、随机森林、XGBoost、模型对比
人工智能·python·神经网络·算法·决策树·随机森林·机器学习
南方的狮子先生8 小时前
【深度学习】卷积神经网络(CNN)入门:看图识物不再难!
人工智能·笔记·深度学习·神经网络·机器学习·cnn·1024程序员节
2501_938963968 小时前
基于音乐推荐数据的逻辑回归实验报告:曲风特征与用户收听意愿预测
算法·机器学习·逻辑回归
2501_938791228 小时前
逻辑回归正则化解释性实验报告:L2 正则对模型系数收缩的可视化分析
算法·机器学习·逻辑回归