YOLOv5 分类模型 Top 1和Top 5 指标实现

YOLOv5 分类模型 Top 1和Top 5 指标实现

flyfish

复制代码
import time
from models.common import DetectMultiBackend
import os
import os.path
from typing import Any, Callable, cast, Dict, List, Optional, Tuple, Union
import cv2
import numpy as np

import torch
from utils.augmentations import classify_transforms


class DatasetFolder:

    def __init__(
        self,
        root: str,

    ) -> None:
        self.root = root
        classes, class_to_idx = self.find_classes(self.root)
        samples = self.make_dataset(self.root, class_to_idx)

        self.classes = classes
        self.class_to_idx = class_to_idx
        self.samples = samples
        self.targets = [s[1] for s in samples]

    @staticmethod
    def make_dataset(
        directory: str,
        class_to_idx: Optional[Dict[str, int]] = None,

    ) -> List[Tuple[str, int]]:

        directory = os.path.expanduser(directory)

        if class_to_idx is None:
            _, class_to_idx = self.find_classes(directory)
        elif not class_to_idx:
            raise ValueError("'class_to_index' must have at least one entry to collect any samples.")

        instances = []
        available_classes = set()
        for target_class in sorted(class_to_idx.keys()):
            class_index = class_to_idx[target_class]
            target_dir = os.path.join(directory, target_class)
            if not os.path.isdir(target_dir):
                continue
            for root, _, fnames in sorted(os.walk(target_dir, followlinks=True)):
                for fname in sorted(fnames):
                    path = os.path.join(root, fname)
                    if 1:  # 验证:
                        item = path, class_index
                        instances.append(item)

                        if target_class not in available_classes:
                            available_classes.add(target_class)

        empty_classes = set(class_to_idx.keys()) - available_classes
        if empty_classes:
            msg = f"Found no valid file for the classes {', '.join(sorted(empty_classes))}. "

        return instances

    def find_classes(self, directory: str) -> Tuple[List[str], Dict[str, int]]:

        classes = sorted(entry.name for entry in os.scandir(directory) if entry.is_dir())
        if not classes:
            raise FileNotFoundError(f"Couldn't find any class folder in {directory}.")

        class_to_idx = {cls_name: i for i, cls_name in enumerate(classes)}
        return classes, class_to_idx

    def __getitem__(self, index: int) -> Tuple[Any, Any]:

        path, target = self.samples[index]
        sample = self.loader(path)

        return sample, target

    def __len__(self) -> int:
        return len(self.samples)

    def loader(self, path):
        print("path:", path)
        img = cv2.imread(path)  # BGR HWC
        return img


def time_sync():
    return time.time()


dataset = DatasetFolder(root="/media/flyfish/test/val")

# image, label=dataset[7]
# print(image.shape)
#
weights = "/media/flyfish/yolov5-6.2/classes10.pt"
device = "cpu"
model = DetectMultiBackend(weights, device=device, dnn=False, fp16=False)
model.eval()

transforms = classify_transforms(224)

pred, targets, loss, dt = [], [], 0, [0.0, 0.0, 0.0]
# current batch size =1
for i, (images, labels) in enumerate(dataset):
    print("i:", i)
    print(images.shape, labels)
    im = cv2.cvtColor(images, cv2.COLOR_BGR2RGB)
    im = transforms(im)
    images = im.unsqueeze(0).to("cpu")
 
    print(images.shape)


        
    t1 = time_sync()
    images = images.to(device, non_blocking=True)
    t2 = time_sync()
    # dt[0] += t2 - t1

    y = model(images)
    y=y.numpy()
   
    print("y:", y)
    t3 = time_sync()
    # dt[1] += t3 - t2

    tmp1=y.argsort()[:,::-1][:, :5]
   
    print("tmp1:", tmp1)
    pred.append(tmp1)

    print("labels:", labels)

    
    targets.append(labels)

    print("for pred:", pred)  # list
    print("for targets:", targets)  # list

    # dt[2] += time_sync() - t3


pred, targets = np.concatenate(pred), np.array(targets)
print("pred:", pred)
print("pred:", pred.shape)
print("targets:", targets)
print("targets:", targets.shape)
correct = ((targets[:, None] == pred)).astype(np.float32)
print("correct:", correct.shape)
print("correct:", correct)
acc = np.stack((correct[:, 0], correct.max(1)), axis=1)  # (top1, top5) accuracy
print("acc:", acc.shape)
print("acc:", acc)
top = acc.mean(0)
print("top1:", top[0])
print("top5:", top[1])

输出

复制代码
pred: [[7 4 0 5 9]
 [9 2 4 6 7]
 [8 9 6 2 1]
 [8 9 6 2 7]
 [9 2 4 6 3]
 [6 7 1 2 9]
 [4 2 1 8 9]
 [6 8 9 5 2]
 [8 7 4 2 6]
 [9 8 2 6 4]
 [2 9 8 0 6]
 [7 4 8 6 3]]
pred: (12, 5)
targets: [0 0 0 0 1 1 1 1 2 2 2 2]
targets: (12,)
correct: (12, 5)
correct: [[          0           0           1           0           0]
 [          0           0           0           0           0]
 [          0           0           0           0           0]
 [          0           0           0           0           0]
 [          0           0           0           0           0]
 [          0           0           1           0           0]
 [          0           0           1           0           0]
 [          0           0           0           0           0]
 [          0           0           0           1           0]
 [          0           0           1           0           0]
 [          1           0           0           0           0]
 [          0           0           0           0           0]]
acc: (12, 2)
acc: [[          0           1]
 [          0           0]
 [          0           0]
 [          0           0]
 [          0           0]
 [          0           1]
 [          0           1]
 [          0           0]
 [          0           1]
 [          0           1]
 [          1           1]
 [          0           0]]
top1: 0.083333336
top5: 0.5

Yolov5 6.2 原版输出

复制代码
pred: tensor([[6, 7, 1, 2, 9],
        [9, 2, 4, 6, 3],
        [7, 4, 0, 5, 9],
        [9, 8, 2, 6, 4],
        [6, 8, 9, 5, 2],
        [8, 7, 4, 2, 6],
        [9, 2, 4, 6, 7],
        [2, 9, 8, 0, 6],
        [8, 9, 6, 2, 7],
        [7, 4, 8, 6, 3],
        [4, 2, 1, 8, 9],
        [8, 9, 6, 2, 1]])
pred: torch.Size([12, 5])
targets: tensor([1, 1, 0, 2, 1, 2, 0, 2, 0, 2, 1, 0])
targets: torch.Size([12])
correct: torch.Size([12, 5])
acc: torch.Size([12, 2])
top1: 0.0833333358168602
top5: 0.5

文本代码是按照标签,即文件夹名字排序的,pred和target都是一一对应的,与Yolov5 6.2 原版相同

相关推荐
闲人编程43 分钟前
构建一个短链接生成器服务(FastAPI + SQLite)
jvm·python·sqlite·fastapi·生成器·短链接·caodecapsule
杰瑞哥哥1 小时前
标准 Python 项目结构
开发语言·python
西部森林牧歌2 小时前
Arbess零基础学习 - 使用Arbess+GitLab实现Python项目构建/主机部署
python·ci/cd·gitlab·tiklab devops
Jay_Franklin2 小时前
Python中使用sqlite3模块和panel完成SQLite数据库中PDF的写入和读取
数据库·笔记·python·pycharm·sqlite·pdf·py
热爱编程的小白白2 小时前
【Playwright自动化】安装和使用
开发语言·python
听风吟丶2 小时前
Java NIO 深度解析:从 BIO 到 NIO 的演进与实战
开发语言·python
yuxb732 小时前
Python基础(一)
笔记·python
QiZhang | UESTC2 小时前
JAVA算法练习题day67
java·python·学习·算法·leetcode
Kratzdisteln2 小时前
【TIDE DIARY 7】临床指南转公众版系统升级详解
python
B站_计算机毕业设计之家3 小时前
深度学习:python人脸表情识别系统 情绪识别系统 深度学习 神经网络CNN算法 ✅
python·深度学习·神经网络·算法·yolo·机器学习·cnn