YOLOv5 分类模型 Top 1和Top 5 指标实现

YOLOv5 分类模型 Top 1和Top 5 指标实现

flyfish

import time
from models.common import DetectMultiBackend
import os
import os.path
from typing import Any, Callable, cast, Dict, List, Optional, Tuple, Union
import cv2
import numpy as np

import torch
from utils.augmentations import classify_transforms


class DatasetFolder:

    def __init__(
        self,
        root: str,

    ) -> None:
        self.root = root
        classes, class_to_idx = self.find_classes(self.root)
        samples = self.make_dataset(self.root, class_to_idx)

        self.classes = classes
        self.class_to_idx = class_to_idx
        self.samples = samples
        self.targets = [s[1] for s in samples]

    @staticmethod
    def make_dataset(
        directory: str,
        class_to_idx: Optional[Dict[str, int]] = None,

    ) -> List[Tuple[str, int]]:

        directory = os.path.expanduser(directory)

        if class_to_idx is None:
            _, class_to_idx = self.find_classes(directory)
        elif not class_to_idx:
            raise ValueError("'class_to_index' must have at least one entry to collect any samples.")

        instances = []
        available_classes = set()
        for target_class in sorted(class_to_idx.keys()):
            class_index = class_to_idx[target_class]
            target_dir = os.path.join(directory, target_class)
            if not os.path.isdir(target_dir):
                continue
            for root, _, fnames in sorted(os.walk(target_dir, followlinks=True)):
                for fname in sorted(fnames):
                    path = os.path.join(root, fname)
                    if 1:  # 验证:
                        item = path, class_index
                        instances.append(item)

                        if target_class not in available_classes:
                            available_classes.add(target_class)

        empty_classes = set(class_to_idx.keys()) - available_classes
        if empty_classes:
            msg = f"Found no valid file for the classes {', '.join(sorted(empty_classes))}. "

        return instances

    def find_classes(self, directory: str) -> Tuple[List[str], Dict[str, int]]:

        classes = sorted(entry.name for entry in os.scandir(directory) if entry.is_dir())
        if not classes:
            raise FileNotFoundError(f"Couldn't find any class folder in {directory}.")

        class_to_idx = {cls_name: i for i, cls_name in enumerate(classes)}
        return classes, class_to_idx

    def __getitem__(self, index: int) -> Tuple[Any, Any]:

        path, target = self.samples[index]
        sample = self.loader(path)

        return sample, target

    def __len__(self) -> int:
        return len(self.samples)

    def loader(self, path):
        print("path:", path)
        img = cv2.imread(path)  # BGR HWC
        return img


def time_sync():
    return time.time()


dataset = DatasetFolder(root="/media/flyfish/test/val")

# image, label=dataset[7]
# print(image.shape)
#
weights = "/media/flyfish/yolov5-6.2/classes10.pt"
device = "cpu"
model = DetectMultiBackend(weights, device=device, dnn=False, fp16=False)
model.eval()

transforms = classify_transforms(224)

pred, targets, loss, dt = [], [], 0, [0.0, 0.0, 0.0]
# current batch size =1
for i, (images, labels) in enumerate(dataset):
    print("i:", i)
    print(images.shape, labels)
    im = cv2.cvtColor(images, cv2.COLOR_BGR2RGB)
    im = transforms(im)
    images = im.unsqueeze(0).to("cpu")
 
    print(images.shape)


        
    t1 = time_sync()
    images = images.to(device, non_blocking=True)
    t2 = time_sync()
    # dt[0] += t2 - t1

    y = model(images)
    y=y.numpy()
   
    print("y:", y)
    t3 = time_sync()
    # dt[1] += t3 - t2

    tmp1=y.argsort()[:,::-1][:, :5]
   
    print("tmp1:", tmp1)
    pred.append(tmp1)

    print("labels:", labels)

    
    targets.append(labels)

    print("for pred:", pred)  # list
    print("for targets:", targets)  # list

    # dt[2] += time_sync() - t3


pred, targets = np.concatenate(pred), np.array(targets)
print("pred:", pred)
print("pred:", pred.shape)
print("targets:", targets)
print("targets:", targets.shape)
correct = ((targets[:, None] == pred)).astype(np.float32)
print("correct:", correct.shape)
print("correct:", correct)
acc = np.stack((correct[:, 0], correct.max(1)), axis=1)  # (top1, top5) accuracy
print("acc:", acc.shape)
print("acc:", acc)
top = acc.mean(0)
print("top1:", top[0])
print("top5:", top[1])

输出

pred: [[7 4 0 5 9]
 [9 2 4 6 7]
 [8 9 6 2 1]
 [8 9 6 2 7]
 [9 2 4 6 3]
 [6 7 1 2 9]
 [4 2 1 8 9]
 [6 8 9 5 2]
 [8 7 4 2 6]
 [9 8 2 6 4]
 [2 9 8 0 6]
 [7 4 8 6 3]]
pred: (12, 5)
targets: [0 0 0 0 1 1 1 1 2 2 2 2]
targets: (12,)
correct: (12, 5)
correct: [[          0           0           1           0           0]
 [          0           0           0           0           0]
 [          0           0           0           0           0]
 [          0           0           0           0           0]
 [          0           0           0           0           0]
 [          0           0           1           0           0]
 [          0           0           1           0           0]
 [          0           0           0           0           0]
 [          0           0           0           1           0]
 [          0           0           1           0           0]
 [          1           0           0           0           0]
 [          0           0           0           0           0]]
acc: (12, 2)
acc: [[          0           1]
 [          0           0]
 [          0           0]
 [          0           0]
 [          0           0]
 [          0           1]
 [          0           1]
 [          0           0]
 [          0           1]
 [          0           1]
 [          1           1]
 [          0           0]]
top1: 0.083333336
top5: 0.5

Yolov5 6.2 原版输出

pred: tensor([[6, 7, 1, 2, 9],
        [9, 2, 4, 6, 3],
        [7, 4, 0, 5, 9],
        [9, 8, 2, 6, 4],
        [6, 8, 9, 5, 2],
        [8, 7, 4, 2, 6],
        [9, 2, 4, 6, 7],
        [2, 9, 8, 0, 6],
        [8, 9, 6, 2, 7],
        [7, 4, 8, 6, 3],
        [4, 2, 1, 8, 9],
        [8, 9, 6, 2, 1]])
pred: torch.Size([12, 5])
targets: tensor([1, 1, 0, 2, 1, 2, 0, 2, 0, 2, 1, 0])
targets: torch.Size([12])
correct: torch.Size([12, 5])
acc: torch.Size([12, 2])
top1: 0.0833333358168602
top5: 0.5

文本代码是按照标签,即文件夹名字排序的,pred和target都是一一对应的,与Yolov5 6.2 原版相同

相关推荐
哇咔咔哇咔25 分钟前
【科普】conda、virtualenv, venv分别是什么?它们之间有什么区别?
python·conda·virtualenv
CSXB991 小时前
三十四、Python基础语法(文件操作-上)
开发语言·python·功能测试·测试工具
亚图跨际2 小时前
MATLAB和Python及R潜变量模型和降维
python·matlab·r语言·生物学·潜变量模型
IT古董2 小时前
【机器学习】决定系数(R²:Coefficient of Determination)
人工智能·python·机器学习
德育处主任Pro2 小时前
『Django』APIView基于类的用法
后端·python·django
Star Patrick2 小时前
算法训练(leetcode)二刷第十九天 | *39. 组合总和、*40. 组合总和 II、*131. 分割回文串
python·算法·leetcode
武子康3 小时前
大数据-213 数据挖掘 机器学习理论 - KMeans Python 实现 距离计算函数 质心函数 聚类函数
大数据·人工智能·python·机器学习·数据挖掘·scikit-learn·kmeans
写点什么啦3 小时前
使用R语言survminer获取生存分析高风险和低风险的最佳截断值cut-off
开发语言·python·r语言·生存分析·x-tile
武子康3 小时前
大数据-214 数据挖掘 机器学习理论 - KMeans Python 实现 算法验证 sklearn n_clusters labels
大数据·人工智能·python·深度学习·算法·机器学习·数据挖掘
封步宇AIGC4 小时前
量化交易系统开发-实时行情自动化交易-Okex K线数据
人工智能·python·机器学习·数据挖掘