缓存和DB一致性

读操作,一般是先查询缓存,查询不到再查询数据库,最后回写进缓存。

写操作,究竟是先删除(更新)缓存,再更新数据库,还是先更新数据库,再删除(更新)缓存呢?

java 复制代码
1、给缓存设置过期时间
适用于对数据一致性要求较低或者写请求很少的业务

当读请求没有命中缓存时,就从数据库中读,之后回写到缓存里,同时设置一个过期时间。
写请求直接更改数据库,不用操作缓存。


2、先更新数据库,再更新缓存
如果利用到缓存,那么肯定是读多写少的场景
缺点:
写多读少时,频繁更新缓存会降低性能
并发情况下可能存在将脏数据写回缓存的风险

为什么会有脏读:
首先线程1更新数据库,还没来得及更新缓存,线程2更新数据,在更新缓存成功,然后线程1在更新缓存,结果就变成了数
据库和缓存的数据不一致。

3、先更新缓存,再更新数据库
和方案2类似,也会存在相同的问题。

缺点:
比如线程1更新缓存,还没来得及更行数据库,线程2更新缓存在更新数据库,最后线程1更新数据库,这个时候数据和缓存不一致。


4:先更新数据库,再删除缓存
既然方案2与方案3都是更新缓存,这里不妨直接删除缓存呢?

缺点:
这种也有一个问题就是:当线程1准备更新数据库,线程1还没来得及执行,线程2过来读,还没写入缓存,然后线程1更
新数据,并且删除缓存,线程2在写入缓存就造成了数据不一致。

5、先删除缓存,再更新数据库
缺点:线程1删除缓存,线程2过来读,还没写入缓存,结果线程1更新了数据库,线程2在写入缓存,这个时候,缓存和数据
库的数据也不一致。


方案6:延时双删
更新请求:先删除缓存,在更新数据库,在删除缓存。

缺点:
存在第二次删除失败的情况


方案7:消息队列
先更新数据库,接着将删除缓存的消息投递到mq中。自身拿到消息后,尝试进行删除缓存。如果失败,则不断进行重试。

缺点:
引入了消息队列,系统的复杂性提升,可用性降低。
也会带来各种各样的问题,例如消息丢失、乱序与重复消费等。乱序与重复消费的问题,在删除缓存的场景下,不会造
成任何问题。


方案8    消息队列+订阅binlog
复杂度提升了

缓存和DB一致性-canal,其实这个也是基于Binlog+Mq的方式跳转

相关推荐
得物技术1 天前
MySQL单表为何别超2000万行?揭秘B+树与16KB页的生死博弈|得物技术
数据库·后端·mysql
可涵不会debug1 天前
【IoTDB】时序数据库选型指南:工业大数据场景下的技术突围
数据库·时序数据库
ByteBlossom1 天前
MySQL 面试场景题之如何处理 BLOB 和CLOB 数据类型?
数据库·mysql·面试
麦兜*1 天前
MongoDB Atlas 云数据库实战:从零搭建全球多节点集群
java·数据库·spring boot·mongodb·spring·spring cloud
Slaughter信仰1 天前
深入理解Java虚拟机:JVM高级特性与最佳实践(第3版)第十章知识点问答(10题)
java·jvm·数据库
麦兜*1 天前
MongoDB 在物联网(IoT)中的应用:海量时序数据处理方案
java·数据库·spring boot·物联网·mongodb·spring
-Xie-1 天前
Mysql杂志(十六)——缓存池
数据库·mysql·缓存
七夜zippoe1 天前
缓存与数据库一致性实战手册:从故障修复到架构演进
数据库·缓存·架构
weixin_456904271 天前
跨域(CORS)和缓存中间件(Redis)深度解析
redis·缓存·中间件