1. 副本
副本的目的主要是保障数据的高可用性,即使一台ClickHouse节点宕机,那么也可以从其他服务器获得相同的数据。
Data Replication | ClickHouse Docs
1. 1 副本写入流程

1. 2 配置步骤
(1)启动zookeeper集群
(2)在hadoop102的/etc/clickhouse-server/config.d目录下创建一个名为metrika.xml的配置文件,内容如下:
注:也可以不创建外部文件,直接在config.xml中指定<zookeeper>
<?xml version="1.0"?>
<yandex>
<zookeeper-servers>
<node index="1">
<host>hadoop102</host>
<port>2181</port>
</node>
<node index="2">
<host>hadoop103</host>
<port>2181</port>
</node>
<node index="3">
<host>hadoop104</host>
<port>2181</port>
</node>
</zookeeper-servers>
</yandex>
(3)同步到hadoop103和hadoop104上
sudo /home/atguigu/bin/xsync /etc/clickhouse-server/config.d/metrika.xml
(4)在 hadoop102的/etc/clickhouse-server/config.xml中增加
<zookeeper incl="zookeeper-servers" optional="true" />
<include_from>/etc/clickhouse-server/config.d/metrika.xml</include_from>

(5)同步到hadoop103和hadoop104上
sudo /home/atguigu/bin/xsync /etc/clickhouse-server/config.xml
分别在hadoop102和hadoop103上启动ClickHouse服务
注意:因为修改了配置文件,如果以前启动了服务需要重启
atguigu@hadoop102\|3 \~\]$ sudo clickhouse restart
注意:我们演示副本操作只需要在hadoop102和hadoop103两台服务器即可,上面的操作,我们hadoop104可以你不用同步,我们这里为了保证集群中资源的一致性,做了同步。
(6)在hadoop102和hadoop103上分别建表
副本只能同步数据,不能同步表结构,所以我们需要在每台机器上自己手动建表
①hadoop102
create table t_order_rep2 (
id UInt32,
sku_id String,
total_amount Decimal(16,2),
create_time Datetime
) engine =ReplicatedMergeTree('/clickhouse/table/01/t_order_rep','rep_102')
partition by toYYYYMMDD(create_time)
primary key (id)
order by (id,sku_id);
②hadoop103
create table t_order_rep2 (
id UInt32,
sku_id String,
total_amount Decimal(16,2),
create_time Datetime
) engine =ReplicatedMergeTree('/clickhouse/table/01/t_order_rep','rep_103')
partition by toYYYYMMDD(create_time)
primary key (id)
order by (id,sku_id);
③参数解释
ReplicatedMergeTree 中,
**第一个参数** 是分片的zk_path一般按照: /clickhouse/table/{shard}/{table_name} 的格式写,如果只有一个分片就写01即可。
**第二个参数** 是副本名称,相同的分片副本名称不能相同。
(7)在hadoop102上执行insert语句
insert into t_order_rep2 values
(101,'sku_001',1000.00,'2020-06-01 12:00:00'),
(102,'sku_002',2000.00,'2020-06-01 12:00:00'),
(103,'sku_004',2500.00,'2020-06-01 12:00:00'),
(104,'sku_002',2000.00,'2020-06-01 12:00:00'),
(105,'sku_003',600.00,'2020-06-02 12:00:00');

(8)在hadoop103上执行select,可以查询出结果,说明副本配置正确

## **2.** **分片集群**
副本虽然能够提高数据的可用性,降低丢失风险,但是每台服务器实际上必须容纳全量数据,对数据的横向扩容没有解决。
要解决数据水平切分的问题,需要引入分片的概念。通过分片把一份完整的数据进行切分,不同的分片分布到不同的节点上,再通过Distributed表引擎把数据拼接起来一同使用。
Distributed表引擎本身不存储数据,有点类似于MyCat之于MySql,成为一种中间件,通过分布式逻辑表来写入、分发、路由来操作多台节点不同分片的分布式数据。
注意:ClickHouse的集群是表级别的,实际企业中,大部分做了高可用,但是没有用分片,避免降低查询性能以及操作集群的复杂性。
### **2.** **1** **集群写入流程(3分片2副本共6个节点)**

### **2.** **2** **集群读取流程(3分片2副本共6个节点)**

### **2.** **3** **3分片2副本共6个节点集群配置(供参考)**
配置的位置还是在之前的/etc/clickhouse-server/config.d/metrika.xml,内容如下
注:也可以不创建外部文件,直接在config.xml的\