Kafka面试题

kafka为什么吞吐量大?

Kafka能够实现高吞吐量的原因有几个关键点:

  1. 分布式架构:Kafka采用分布式架构,可以横向扩展到多个Broker节点,每个节点可以承载多个分区和副本。这种架构允许数据分布在多个节点上,并行处理和传输消息,从而提高整体系统的吞吐量。

  2. 零拷贝技术:Kafka利用零拷贝技术在数据传输过程中避免了数据的多次复制,有效地降低了CPU和内存的消耗。生产者将数据直接写入内核空间的socket缓冲区,消费者从socket缓冲区直接读取数据,避免了数据在用户态和内核态之间的拷贝,提高了数据传输的效率。

  3. 基于磁盘的顺序写入:Kafka采用顺序写入磁盘的方式,通过将消息追加写入到日志文件中,可以最大程度地利用磁盘的顺序读写性能,提高了写入和读取的效率。

  4. 批量发送和压缩、批量消费:Kafka允许生产者批量发送消息,将多个消息打包成一个批次进行发送,减少了网络传输开销。此外,Kafka还支持消息压缩,可以在传输过程中对消息进行压缩,减少网络传输的数据量,提高了传输效率。

  5. 高效的持久化机制:Kafka的持久化机制使用了顺序写入和分段存储的方式,配合索引文件,能够高效地存储大量的消息,提供高可靠性的消息存储和检索。

综合以上因素,Kafka通过优化架构设计、采用零拷贝技术、顺序写入磁盘、批量发送和压缩等技术手段,实现了高吞吐量的特性,使得其在大规模数据处理和分发场景下表现出色。

Kafka如何保证消息不丢失?

对于Producer来说:

  1. 生产者确认机制:生产者可以通过配置确认机制来确保消息已经成功写入到Kafka中。生产者发送消息后,可以选择等待Leader确认收到消息或者等待所有副本都确认收到消息,这样可以确保消息不会因为网络故障或者其他问题丢失。

对于Broker来说:

  1. 持久化机制:Kafka使用持久化日志(commit log)来存储消息。消息首先写入到磁盘上的日志文件,这样即使在传输过程中出现故障或者在处理消息时出现问题,数据仍然是可恢复的。

  2. 副本机制:Kafka使用副本机制在多个Broker之间复制分区数据。每个分区都可以配置多个副本,其中一个是leader副本,其他的是follower副本。这种复制机制可以确保即使某个Broker宕机,数据仍然存在于其他副本中,保证了消息的可靠性和容错性。

对于 Consumer来说:

  1. 消费者偏移量管理:Kafka通过消费者组管理消费者的偏移量(offset),消费者可以跟踪自己消费的位置。即使消费者宕机或者重启,它可以根据偏移量重新定位到上次消费的位置,确保不会丢失消息。
相关推荐
serendipity_hky19 小时前
【微服务 - easy视频 | day04】Seata解决分布式事务
java·spring boot·分布式·spring cloud·微服务·架构
回家路上绕了弯19 小时前
服务器大量请求超时?从网络到代码的全链路排查指南
分布式·后端
陈辛chenxin21 小时前
【大数据技术06】大数据技术
大数据·hadoop·分布式·python·信息可视化
yumgpkpm21 小时前
Hadoop在AI时代如何实现生态协同? CMP 7.13(或类 Cloudera CDP7.3 的 CMP 7.13 平台,如华为鲲鹏 ARM 版)
大数据·hadoop·elasticsearch·zookeeper·kafka·hbase·cloudera
执笔论英雄21 小时前
【大模型训练】megatron分布式并行训练的调用流程,关键函数forward_backward_func
分布式
kaikaile199521 小时前
34节点配电网牛顿-拉夫逊潮流计算 + 分布式电源(DG)多场景分析的 MATLAB
开发语言·分布式·matlab
老虎062721 小时前
黑马点评学习笔记10(优惠券秒杀下单优化(分布式锁的优化,Lua脚本))
笔记·分布式·学习
小坏讲微服务21 小时前
使用 Spring Cloud Gateway 实现集群
java·spring boot·分布式·后端·spring cloud·中间件·gateway
失散131 天前
分布式专题——53 ElasticSearch高可用集群架构实战
java·分布式·elasticsearch·架构
居7然1 天前
详解监督微调(SFT):大模型指令遵循能力的核心构建方案
人工智能·分布式·架构·大模型·transformer