数据处理生产环境_Spark根据给定的轨迹编号生成随机16进制颜色

需求

根据给定的轨迹编号在这一列后面生成随机颜色_16

代码

Scala 复制代码
package test

import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions._
import scala.util.hashing.MurmurHash3

object randomV2 {
  def main(args: Array[String]): Unit = {
    val spark = SparkSession.builder()
      .appName("ColorGeneration")
      .master("local[*]")
      .getOrCreate()

    import spark.implicits._

    // 创建DataFrame使用提供的数据,这里是测试数据,
    //生产环境中我们一般是读取的上一个节点传来的dataframe,直接调下面的方法,自定义函数即可,
    //完全可以实现我们想要的功能,可根据我们的具体虚修再做修改
    //val df = spark.read.csv("xxx.csv", header = true, inferSchema = true),

    val data = Seq(
      ("吃饭", "睡觉"),
      ("吃饭", "宋江"),
      ("郭靖", "宋江"),
      ("杨过", "奥特曼")
    )
    val df1 = data.toDF("a1", "a2")
    

    // 定义基于种子的随机颜色生成函数
    def getRandomColorFromSeed(seed: String): String = {
      val hashed = MurmurHash3.stringHash(seed) // 使用MurmurHash3生成种子的哈希值
      val r = (hashed & 0xFF0000) >> 16
      val g = (hashed & 0x00FF00) >> 8
      val b = hashed & 0x0000FF
      f"#$r%02x$g%02x$b%02x"
    }

    val getRandomColorWithSeedUDF = udf((seed: String) => getRandomColorFromSeed(seed))

    val dfWithColor = df1.withColumn("c1", getRandomColorWithSeedUDF($"a1"))

    dfWithColor.show() // 显示包含使用相同随机种子生成的新 "c1" 列的 DataFrame
  }
}
相关推荐
xixixi7777733 分钟前
基于零信任架构的通信
大数据·人工智能·架构·零信任·通信·个人隐私
Hello.Reader1 小时前
Flink 自适应批执行(Adaptive Batch Execution)让 Batch 作业“边跑边优化”
大数据·flink·batch
kobe_t1 小时前
分布式定时任务系列14:XXL-job的注册模型
分布式
Knight_AL2 小时前
线程池满了怎么办?用 RabbitMQ 做任务补偿不丢失
分布式·rabbitmq·ruby
LaughingZhu3 小时前
Product Hunt 每日热榜 | 2026-01-31
大数据·人工智能·经验分享·搜索引擎·产品运营
babe小鑫3 小时前
中专学历进入快消大厂终端销售岗位的可行性分析
大数据
samFuB3 小时前
【工具变量】区县5A级旅游景区DID数据集(2000-2025年)
大数据
百夜﹍悠ゼ3 小时前
数据治理DataHub安装部署
大数据·数据治理
wdfk_prog4 小时前
解决 `git cherry-pick` 引入大量新文件的问题
大数据·git·elasticsearch
難釋懷4 小时前
分布式锁-redission锁的MutiLock原理
分布式