数据处理生产环境_Spark根据给定的轨迹编号生成随机16进制颜色

需求

根据给定的轨迹编号在这一列后面生成随机颜色_16

代码

Scala 复制代码
package test

import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions._
import scala.util.hashing.MurmurHash3

object randomV2 {
  def main(args: Array[String]): Unit = {
    val spark = SparkSession.builder()
      .appName("ColorGeneration")
      .master("local[*]")
      .getOrCreate()

    import spark.implicits._

    // 创建DataFrame使用提供的数据,这里是测试数据,
    //生产环境中我们一般是读取的上一个节点传来的dataframe,直接调下面的方法,自定义函数即可,
    //完全可以实现我们想要的功能,可根据我们的具体虚修再做修改
    //val df = spark.read.csv("xxx.csv", header = true, inferSchema = true),

    val data = Seq(
      ("吃饭", "睡觉"),
      ("吃饭", "宋江"),
      ("郭靖", "宋江"),
      ("杨过", "奥特曼")
    )
    val df1 = data.toDF("a1", "a2")
    

    // 定义基于种子的随机颜色生成函数
    def getRandomColorFromSeed(seed: String): String = {
      val hashed = MurmurHash3.stringHash(seed) // 使用MurmurHash3生成种子的哈希值
      val r = (hashed & 0xFF0000) >> 16
      val g = (hashed & 0x00FF00) >> 8
      val b = hashed & 0x0000FF
      f"#$r%02x$g%02x$b%02x"
    }

    val getRandomColorWithSeedUDF = udf((seed: String) => getRandomColorFromSeed(seed))

    val dfWithColor = df1.withColumn("c1", getRandomColorWithSeedUDF($"a1"))

    dfWithColor.show() // 显示包含使用相同随机种子生成的新 "c1" 列的 DataFrame
  }
}
相关推荐
小北方城市网8 分钟前
第1课:架构设计核心认知|从0建立架构思维(架构系列入门课)
大数据·网络·数据结构·python·架构·数据库架构
收获不止数据库25 分钟前
黄仁勋2026CES演讲复盘:旧世界,裂开了!
大数据·数据库·人工智能·职场和发展
老胡全房源系统26 分钟前
房产中介管理系统哪一款性价比高
大数据·人工智能·房产经纪人培训
黄焖鸡能干四碗33 分钟前
信息安全网络安全评估报告(WORD)
大数据·网络·人工智能·安全·web安全·制造·需求分析
汤姆yu1 小时前
基于python大数据的协同过滤音乐推荐系统
大数据·开发语言·python
Data_agent1 小时前
Cssbuy 模式淘宝 / 1688 代购系统南美市场搭建指南
大数据·python
川西胖墩墩1 小时前
团队协作泳道图制作工具 PC中文免费
大数据·论文阅读·人工智能·架构·流程图
云启数智YQ2 小时前
企业进行大数据迁移的注意事项有些什么?
大数据·大文件传输·跨国文件传输·内外网文件传输·大文件传输软件
房产中介行业研习社2 小时前
嘉兴国商区2026年1月品质楼盘推荐
大数据·人工智能·房产直播技巧·房产直播培训
巧克力味的桃子3 小时前
Spark 课程核心知识点复习汇总
大数据·分布式·spark