数据处理生产环境_Spark根据给定的轨迹编号生成随机16进制颜色

需求

根据给定的轨迹编号在这一列后面生成随机颜色_16

代码

Scala 复制代码
package test

import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions._
import scala.util.hashing.MurmurHash3

object randomV2 {
  def main(args: Array[String]): Unit = {
    val spark = SparkSession.builder()
      .appName("ColorGeneration")
      .master("local[*]")
      .getOrCreate()

    import spark.implicits._

    // 创建DataFrame使用提供的数据,这里是测试数据,
    //生产环境中我们一般是读取的上一个节点传来的dataframe,直接调下面的方法,自定义函数即可,
    //完全可以实现我们想要的功能,可根据我们的具体虚修再做修改
    //val df = spark.read.csv("xxx.csv", header = true, inferSchema = true),

    val data = Seq(
      ("吃饭", "睡觉"),
      ("吃饭", "宋江"),
      ("郭靖", "宋江"),
      ("杨过", "奥特曼")
    )
    val df1 = data.toDF("a1", "a2")
    

    // 定义基于种子的随机颜色生成函数
    def getRandomColorFromSeed(seed: String): String = {
      val hashed = MurmurHash3.stringHash(seed) // 使用MurmurHash3生成种子的哈希值
      val r = (hashed & 0xFF0000) >> 16
      val g = (hashed & 0x00FF00) >> 8
      val b = hashed & 0x0000FF
      f"#$r%02x$g%02x$b%02x"
    }

    val getRandomColorWithSeedUDF = udf((seed: String) => getRandomColorFromSeed(seed))

    val dfWithColor = df1.withColumn("c1", getRandomColorWithSeedUDF($"a1"))

    dfWithColor.show() // 显示包含使用相同随机种子生成的新 "c1" 列的 DataFrame
  }
}
相关推荐
li_wen014 小时前
文件系统(八):Linux JFFS2文件系统工作原理、优势与局限
大数据·linux·数据库·文件系统·jffs2
昨夜见军贴06166 小时前
IACheck AI审核在生产型企业质量控制记录中的实践探索——全面赋能有关物质研究合规升级
大数据·人工智能
盖雅工场6 小时前
驱动千店销售转化提升10%:3C零售门店的人效优化实战方案
大数据·人工智能·零售·数字化管理·智能排班·零售排班
发哥来了6 小时前
【AI视频创作】【评测】【核心能力与成本效益】
大数据·人工智能
你才是臭弟弟7 小时前
什么是真正的“数据湖”(核心)
大数据
街灯L8 小时前
【kylin-Linux】Flash兼容插件包安装
大数据·linux·运维·kylin
min1811234568 小时前
AI金融风控:智能反欺诈与个性化理财
大数据·人工智能
渣渣盟10 小时前
大数据技术 Flink 优化之数据倾斜
大数据·flink
2501_9336707910 小时前
高职/大专学计算机的突围路径
大数据
xinyuan_12345610 小时前
不止于提速:德州数智招标采购交易平台,重塑采购生态新效率
大数据·人工智能