如何在OpenAI的模型上做微调

OpenAI 已经支持在它的模型上进行微调,包括 gpt-3.5-turbo,gpt-4。在这里,把如何微调 OpenAI 的 GPT-3.5-turbo-1106的过程记录下来。

一、准备数据集

微调任何人工智能模型的第一步是准备训练数据集。对于我们的示例,我们将使用名为 的 CSV 文件。

此例子中,translate.csv 其中包含与一些游戏领域的中文翻译内容。 origin为原文,target为译文

然后,我们将此 CSV 文件转换为更适合训练 AI 模型的 JSONL(JSON Lines)格式。下面的 Python 脚本读取 CSV 文件并将其转换为 JSONL 格式:

python 复制代码
import json  

import pandas as pd  

DEFAULT_SYSTEM_PROMPT = '把在>>>和<<<中的内容翻译成[[和]]中的语言 '  

def get_example(language, origin, target):  

    return {  

        "messages": [  

            {"role": "system", "content": DEFAULT_SYSTEM_PROMPT},  

            {"role": "user", "content": f'[[{language}]], >>>{origin}<<<'},  

            {"role": "assistant", "content": target},  

        ]  

    }  

if __name__ == "__main__":  

    df = pd.read_csv("translate.csv")  

    with open("train.jsonl", "w", encoding="utf8") as f:  

        for i, row in list(df.iterrows()):  

            origin = row["origin"]  

            target = row["target"]  

            print(origin)

            example = get_example('en', origin, target)  

            example_str = json.dumps(example,ensure_ascii=False)  

            f.write(example_str + "\n")

  

生成的jsonl中的内容类似

具体每一个行类似

二、运行微调

一旦我们准备好训练数据集,我们就可以使用 OpenAI 的 API 继续微调我们的模型:

1、安装openai 包

注意:本文的例子需要 openai 版本 > 1.1.0 的,如果太老旧了,请更新

复制代码
pip install openai

2、执行微调命令

python 复制代码
  


import json

from time import sleep

from openai import OpenAI


import os

os.environ['OPENAI_API_KEY']="sk-7Vl54m90xxxxxxxxxxxxxxxxxxxxxxx"

client = OpenAI()

#client = OpenAI(api_key="sk-7Vl54m90xxxxxxxxxxxxx")    #或者通过参数传入类似

 
model_name = 'gpt-3.5-turbo-1106'

#监控任务完成状态

def wait_untill_done(job_id):

    events = {}

    while True:

        response = client.fine_tuning.jobs.list_events(fine_tuning_job_id=job_id, limit=10)

        print('fine tuning, waiting for ...')

        # collect all events

        for event in response.data:

            if "data" in event and event.data:

              print(event.data)

              events[event.data["step"]] = event.data["train_loss"]

        messages = [it.message for it in response.data]

        for m in messages:

            if m.startswith("New fine-tuned model created: "):

                return m.split("created: ")[1], events

        sleep(10)

if __name__ == "__main__":

    response = client.files.create(file=open("train.jsonl", "rb"), purpose="fine-tune")

    uploaded_id = response.id

    print('uploaded_id=', uploaded_id )

    print("Dataset is uploaded")

    print("Sleep 10 seconds...")

    sleep(10)  # wait until dataset would be prepared

   

    response = client.fine_tuning.jobs.create(training_file=uploaded_id,model=model_name)

    ft_job_id = response.id

    print("Fine-tune job is started, job_id = ",ft_job_id)

    new_model_name, events = wait_untill_done(ft_job_id)

    with open("new_model_name.txt", "w") as fp:

        fp.write(new_model_name)

    print("Fine-tune job is success, new model name = ",new_model_name)

执行成功后,可以看到类似这样的内容

erlang 复制代码
uploaded_id= file-3KzFOCxKqfZTZe89m1I40wgA

Dataset is uploaded

Sleep 30 seconds...

Fine-tune job is started, job_id = ftjob-PiqWqQ6BDPbB9hCELN2B6MbL

fine tuning, waiting for ...

fine tuning, waiting for ...

fine tuning, waiting for ...

fine tuning, waiting for ...

fine tuning, waiting for ...

fine tuning, waiting for ...

......

Fine-tune job is success, new model name = ft:gpt-3.5-turbo-1106:personal::8LqhuNgA

在执行的过程中,也可以上 platform上platform.openai.com/finetune,可以看到类似这样的内容。

3、记住微调后的model名

成功之后,可以看到输出 Fine-tune job is success, new model name = ft:gpt-3.5-turbo-1106:personal::8LqhuNgA,记住这个新的model name。

如果不小心关掉了,也可以在 platform上查看。如

三、使用微调好的模型

成功微调我们的模型后,我们现在可以使用它根据用户输入生成响应:

python 复制代码
from openai import OpenAI

import os

os.environ['OPENAI_API_KEY']="sk-7Vl54m90xxxxxxxxxxxxxxxxxxxxxxx"

client = OpenAI()

#client = OpenAI(api_key="sk-7Vl54m90xxxxxxxxxxxxx")    #或者通过参数传入类似


response = client.chat.completions.create(

  model="ft:gpt-3.5-turbo-1106:personal::8LqhuNgA", ##此处为上面微调好的新model

  messages=[

    {"role": "system", "content": "你是一个语言专家,把在>>>和<<<中的内容翻译成[[和]]中的语言 "},

    {"role": "user", "content": "[[en]],>>>选择目标友方英雄开始施法,一段时间后传送至目标位置 施法期间右方英雄获得护盾值,并和{Hero_149}获得伤害减免 传送完成后{Hero_149}增加移动速度,自身周围一定范围内右方英雄获得物理防御和魔法防御<<<"}

  ]

)

print(response.choices[0].message.content)

得到这样的结果

css 复制代码
selects a teammate and starts channeling, then teleports to the target after a while. While channeling, he grants a shield to heroes to the right and damage reduction to himself. After teleporting, his Movement Speed is increased, and heroes in range to the right gain Physical Defense and Magical Defense.
相关推荐
一点一木8 小时前
主流 AI 提示词优化工具推荐(2025 全面对比指南)
人工智能·openai·ai编程
新智元10 小时前
刚刚,英伟达新模型上线!4B 推理狂飙 53 倍,全新注意力架构超越 Mamba 2
人工智能·openai
新智元10 小时前
北大数学家终结 50 年猜想!一只蝴蝶翅膀,竟难倒菲尔兹奖得主
人工智能·openai
机器之心11 小时前
热议!DeepSeek V3.1惊现神秘「极」字Bug,模型故障了?
人工智能·openai
尘叶心简12 小时前
从零开发一个Agent
aigc·openai
尘叶心简12 小时前
TranslationAgent源码和架构分析
aigc·openai
深度学习机器16 小时前
aisuite:统一的大模型SDK,简化LLM开发流程
chatgpt·llm·openai
机器之心17 小时前
全球开源大模型,前十五名全是中国的
人工智能·openai
安思派Anspire2 天前
以正确方式构建AI Agents:Agentic AI的设计原则
aigc·openai·agent
新智元2 天前
GPT-5系统提示词突遭泄露,17803 token曝光OpenAI小心思!
人工智能·openai